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ABSTRACT 
 
 
       The main purpose of this work is to find a physical and numerical description related to the 

reaction of the multilayer nano energetic material (nEM) in dense film. Energy density of nEM is 

much higher than the conventional energetic material; therefore, nEM finds more applications in 

propulsions, thermal batteries, material synthesis, nano igniters, waste disposals, and power 

generations. The reaction model of a multilayer nEM in a dense film of aluminum and copper 

oxide deposits on a composite substrate of silica/silicon is studied and solved in different stages.  

The two main interests in this study are propagation speed and maximum temperature of the 

reaction.  In order to relate speed of reaction and maximum flame temperature a number of other 

variables such as heat loss, the product porosity, and the reaction length should be estimated. The 

main aim of this study is to introduce a numerical model which estimates and relates these values 

in multilayer nEM in a dense film. The following is a summary of the execution steps to achieve 

this goal.  

 In Part I of this thesis, flame front speed and the reaction heat loss were the main targets. The 

time-of-flight technique has been developed to measure the speed of flame front with an 

accuracy of 0.1 m/s.  This measurement technique was used to measure the speed of propagation 

on multilayer nEM over different substrate material up to 65 m/s. A controllable environment 

(composite silicon\silica) was created for a multilayer standard thin film of aluminum and copper 

oxide to control the reaction heat loss through the substrate. A number of experimental results 

show that as the thickness of silica decreases, the reaction is completely quenched. Reaction is 

not in self-sustaining mode if the silica thickness is less than 200 nm. It is also observed that by 
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increasing silica’s thickness in substrate, the quenching effect is progressively diminished. The 

speed of reaction seems to be constant at slightly more than 40 m/s for a silica layer with 

thickness greater than 500 nm. This would be the maximum heat penetration depth within the 

silica substrate, so the flame length was calculated based on the measured speed. 

 In Part II, a numerical analysis of the thermal transport of the reacting film deposited on the 

substrate was combined with a hybrid approach in which a traditional two-dimensional black box 

theory was used, in conjunction with the sandwich model, to estimate the maximum flame 

temperature. The appropriate heat flux of the heat sources is responsible for the heat loss to the 

surroundings. A procedure to estimate this heat flux using stoichiometric calculations is based on 

the previous author’s work. This work highlights two important findings. One, there is very little 

difference in the temperature profiles between a single substrate of silica and a composite 

substrate of silicon\silica. Secondly, by increasing the substrate thickness, the quenching effect is 

progressively diminished at given speed. These results also show that the average speed and 

quenching of flames depend on the thickness of the silica substrate and can be controlled by a 

careful choice of the substrate. 

In Part III, a numerical model was developed based on the moving heat source for multilayer 

thin film of aluminum and copper oxide over composite substrate of silicon\silica. The maximum 

combustion flame temperature corresponding to the speed of flame front is the main target of this 

model. Composite substrate was used as a mechanism to control the heat loss during the reaction.  

Thickness of the substrate, the length of flame front, and the density of the product were utilized 

for the standard multilayer thin film with 43 m/s flame front speed. The calculated heat 

penetration depth in this case was compared to the experimental result for the same flame front 
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speed. Numerical model was also used to estimate three major variables for a range of 30-60 m/s. 

In fact, the maximum combustion flame temperature that corresponds to flame speed along with 

the length of the flame, density of the product behind the flame, and maximum penetration depth 

in steady reaction, were calculated. 

These studies will aid in the design of nEM multilayer thin film. As further numerical and 

experimental results are obtained for different nEM thicknesses, a unified model involving 

various parameters can be developed.  
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CHAPTER 1  
INTRODUCTION  

Motivation  

 Nano energetic material (nEM) in multilayer thin film offers higher energy density, reaction 

rate, stability, and precision [1-11]. This study has broad practical applications ranging from 

propulsions, thermal batteries, material synthesis, nano igniters [12-17], waste disposals, and 

power generations [18-23]. The study of energetic material in nano scale geometry is growing 

rapidly due to the significant improvement in ignition process, energy release, and mechanical 

properties.   

 Bulk reaction of energetic material (ball milling) had significant drawbacks in performance 

relative to nEM in thin film. Traditional energetic materials are produced by mixing oxidizer and 

fuel which creates monomolecular, such as nitrocellulose, nitroglycerine, and trinitrotoluene. The 

mixing of oxidizer and fuel powder produce composite energetic materials. Although the 

composites release a higher energy compare to traditional energetic material, the energy release 

rates are slower due to higher mass transport of the reactants. Traditional energetic materials are 

relatively easy to prepare, and their performances can be predicted and the stoichiometry of the 

chemical reactants can be adjusted. [24-27]. Nanotechnology plays a major role to improve the 

reaction of nEM in thin film. Reducing the size of reactive material in nano scale increases the 

surface area between the reactants and the random hot spot within the reaction zone. This 

advantage reduces the diffusion distance of the reaction [28-31] and results in less heat and mass 

transport within the reaction zone. Increasing heat and mass transport leads to enhance heat 

conduction rate. New nEM in thin film is also a strong competitor to organic energetic material. 
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For comparison, traditional energetic compounds based on organic materials have almost similar 

energy per unit weight, but nEM in multilayer thin film offers much higher energy density and 

burn rate capacity. This field of study is relatively young, yet it is showing a great promise and 

potential as an alternative substance for explosive and propellant systems. Energy density and 

burn rate are the two main mechanical criteria for evaluation and comparisons of energetic 

materials.  

Nano multilayer thin film includes a number of configurations such as nano particles in 

powder, gel, air- gel, or sputtering multilayer foil of oxidizer and fuel [32-41]. In general, two 

classes of new nEM are studied; Metastable intermolculer compositions (MIC) and energetic 

material in multilayer dense film or foil. MIC is a class of energetic materials that is composed 

by compressing individual fuel and oxidizer particles down to nano-scale dimensions. These 

same composites can be prepared using micron-size particles and this process is classified as 

pyrotechnics. Despite the high rate of reaction in this class of energetic material, inconsistent 

results generate many gray areas for study in this field. The second type of nEM in multilayer 

dense film or foil is the main target for this study. They have a slower speed of flame front and 

relatively precise and consistent reactions.  

 Nano energetic material in multilayer dense film has shown that a positive correlation exists 

between the burn rate, and the geometry, the deposition process and type of oxidizer [1]. Upper 

limits for the burn rate of nEM materials have not been yet determined. Although many earlier 

studies have shown the burn rate of nEM in dense thin film to be much lower than traditional 

materials a number of reports show a great improvement in this area [42-44].  Utilizing different 

processing technique and improving the geometry have increased the burn rate significantly [46-
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49]. The challenge has been to theoretically explain the actual physical results of these 

experiments and improvements. Theoretical analysis and modeling of the physical results show a 

good reason for utilization of nEM as an alternative energetic material for the explosive and 

propellant systems [44]. These improvements have given hope and motivation to continue the 

intensity of the exploration in order to create a unified, consistent and predictable process. 

A number of materials were used to produce nEM in multilayer thin film [18]. Study shows 

that aluminum and copper oxide are consistent in stochiometric ratio in macro and nanoscale 

reaction. Aluminum and copper oxide in nanoscale have similar stochiometric ratio in nanoscale 

as well as macroscale reaction which makes it easier to study the reaction in nanoscale with 

known composition for a complete reaction. In this study aluminum and copper oxide were used 

as main components for numerical model and experimental exercises.    

Main Objective 

 The main objective of this study is to describe the physical process of self-propagating 

reactions in multilayer thin films by specifying the process as a combustion phenomenon. A 

physical understanding of this process is the key point in defining some of the unknown 

variables that influence the reaction. The speed of flame front and the maximum flame 

temperature are two key factors in the reaction. Establishing the proper way to measure the speed 

of flame front was the first target of this study. Heat loss and the geometry (layered structure) of 

the thin film directly impact the temperature and speed of the flame. Controlling the heat loss 

was the second target of this study.  Measuring the speed of flame front and controlling the heat 

loss helps to calculate the maximum flame temperature for different flame front speeds. A 

physical mechanism to accommodate for heat loss, speed of flame front, and maximum flame 
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temperature was the third target for this study. Additional variables such as length of flame, 

porosity of the products are required in solving a numerical model. Estimate of required 

characteristics of the flame front relative to the speed of flame front was the last target for this 

study. The following section is a summary of the overall progress to achieve these objectives.   

Problem Statement 

 The reaction model of a multilayer nEM in a dense film of aluminum and copper oxide 

deposited over acomposite substrate of silicon\silica is proposed and solved in different stages. 

Three major steps are needed to fully engage all the involved variables in one numerical model.  

1. In first section of this study, speed of flame front, one of distinctive characters of thin 

film reaction, is clearly specified and proper measurement techniques (time-of-flight 

technique) were proposed in order to measure the speed of flame front. Long strips of 

multilayer of aluminum and copper oxide in thicknesses of 26 nm and 54 nm, 

respectively, have been prepared by magnetron sputter deposition (Fig. 1.1). Forty units 

of these strips forming a total thickness of 3.2 µm were used as the standard multilayer 

thin film. Simple and composite substrates were used to control the reaction heat loss 

through the substrate. A number of experiments show that heat loss can control the speed 

of flame front and even quench the flame. 

 
Fig. 1-1 CuO/Al MIC Layers 
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2. A numerical approach was used to explain some of the experimental results in the first 

section based on moving heat flux over composite substrate. This model estimates the 

theoretical maximum temperature of the reaction for the measured speeds in section 1. 

Maximum combustion temperature was calculated with limited heat loss of the thin film; 

hence maximum combustion temperature should be modified if reactions have significant 

heat loss through the environment. Due to the additional heat loss through the substrate, 

using the sandwich model alone to estimate the flame temperature reaction of aluminum 

and copper oxide over the substrate is not sufficient. Using the black box theory, a 

moving heat source model would be an appropriate alternative to represent the heat 

transfer simulation. The black box model alone would not successfully represent the 

actual diffusion process within the reaction zone. Hence, it is vital to integrate the two 

theories supplemented by experimental results to successfully relate the speed of flame 

front and the heat loss to the maximum flame temperature. 

 

3. A two-dimensional numerical model for full reaction of multilayer thin film over 

composite substrate is proposed. The calculated maximum flame temperature was used to 

estimate the following characteristics of the flame for different speeds of flame front   

a. Length of flame represents the certain amount of multilayer thin film which is 

participating in the reaction at any instant.   

b. Reaction Heat loss is controlled by the thickness of the silica within the 

composite substrate. As the thickness of the silica increases, more heat flow is 
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blocked by the silica which causes the maximum flame temperature to rise. 

Excessive heat loss throughout the substrate can be adjusted by changing the 

thickness of the silica.  

c. Density of the product behind the flame is reduced during the reaction. The 

porosity of the product can be adjusted by the properties of the materials, and it 

impacts the heat loss and the flame temperature.  

Thickness of the substrate, length of flame front, and density of product were utilized for the 

standard multilayer thin film with 43 m/s flame front speed. The calculated heat penetration 

depth in this case was compared to the experimental result for the same flame front speed. A 

numerical model also was used to estimate three major variables for speed of flame front in a 

range of 30-60 m/s. In fact, the maximum combustion flame temperature that corresponds to 

speed along with the length of the flame, density of the product behind the flame, and maximum 

penetration depth in steady reaction were calculated when the total thickness of the thin film is 

3200nm. 

Literature Review  

 Combination reactions between chalcogen elements and metals are the most widely studied 

mechanically induced self-sustaining reactions. Takacs [49] summarized the result of a series of 

five papers by Chakurov and his colleagues in 1980s, which represents the first results on self-

sustaining reactions. Following these early studies, the field of mechanochemistry has had a rich 

history, which has led to the use of ball mills for processing a wide range of materials, ranging 
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from minerals to advanced materials.  Bakhshai et al. [50] used the ball milling method to 

demonstrate a self-propagated reaction of a mixture of Cu2O, CuO, and Al powders.  

Combustible multilayer materials are introduced by depositing alternating layers of materials, 

which react exothermically during thermally induced intermixing. Several research teams have 

studied analytical and theoretical processes of various layers and have introduced the general 

thermodynamic and kinetics of a broad range of the thin film reactions.  

 The characterization of a self-propagating CuOx-Al in multilayer foil geometry was 

investigated. Armstrong’s group [51-53] developed a model to find the heat rate of any possible 

multilayer reaction. This was later used by the Weihs’ group. A one-dimensional model can be 

used to calculate the heat transfer of the reaction based on the rate of reaction.  

 The experimental results showed that the highly exothermic nature of the reaction is only a 

prerequisite for initiating combustion. Whether combustion takes place or not depends on the 

dynamic state of the reaction system. The influence of the crystalline structures of the reactants 

on the ignition of the combustion reactions instigated by high-energy ball milling is not always 

predictable. The calculation of the results of some reactions may be different due to internal and 

external variables yet unknown. The factors influencing the outcome of the reaction and the 

variables are being studied.  In this section, aluminum and copper oxide in a multilayer thin film 

and bulk reactions are discussed in detail as the selected, physical and numerical model; and 

also, a number of other related investigations are highlighted and discussed briefly. 

Ball Milling 

 Mechano-chemical process (MCP) uses mechanical energy to activate chemical reactions and 

structural changes.  Mechanically activated processes date back to the early history of 
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humankind. The field of mechano-chemistry has had a rich history, particularly in Europe, which 

has led to the use of ball milling for processing a wide range of materials, ranging from minerals 

to advanced materials.   

  Self–propagating reaction was induced by ball milling in the mixture of Cu2O and Al 

powder. Bakhshai et al. [50] presented the result of a self–propagating reaction between Cu2O 

and Al. Zeck et al. [54] continued the same type of reaction process with other materials. They 

investigated the self-propagating reaction between CuO and Al and compared the two results.  

Bakhshai et al. [56] used the ball milling method to demonstrate a self-propagated reaction of a 

mixture of a Cu2O and Al powders. Ball milling has been used to induce chemical reaction and 

alloying in variety of powder mixtures. 

 Zeck et al. [54] used the ball milling method to demonstrate a self-propagated reaction of the 

mixture of CuO and Al powders. Aself-propagating reaction of CuO and Al had been compared 

with Cu2O and Al. All major components of their experiments were nearly similar. 

Thin Film Reaction  

 The extreme minimization integrated circuits and digital devices have lead to an increase in 

the concern about the performance, reliability and precision of these devices such a small scale.  

Thin film material has increasingly played a main role in many of the new consumer electronic 

devices such as storage media, read and write heads, and flat panel displays. Such a remarkable 

array of applications has created a sense of excitement among the thin film scientists and 

engineers. Specifically, nano energetic materials (nEM) are potentially better alternatives than 

organic materials for explosive and propellant systems. Michaelsent et al. [56] investigated the 

thermodynamics and kinetics of thin film reactions by using differential scanning calorimetry of 
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several materials. The result of this research was published in 1997. Following that investigation 

Weihs’ group [57] presented modeling and characterization of the propagation velocity of 

exothermic reaction in multilayer foils. They studied the CuOx and Al reaction to identify the 

path and reaction kinetics. Experimental evidence showed that in the first reaction, CuOx is 

reduced to the mixture of CuO and Cu2O which coalesces with an interfacial layer of Al2O3. 

They discovered two different paths of reactions in their studies and the results are as follows. 

1) The exothermic reduction-oxidation reaction of CuOx and Al to form Cu and Al2O3 were 

studied in multilayer foil. Using DTA, XRD, Auger depth profiling, and TEM, the 

reaction path and kinetics of the two-step reaction were analyzed [34]. Weihs’ group 

were able to identify likely rate determining processes for each of the two reaction steps 

Based on their experimental results. In the first exothermic reaction, the lateral growth of 

Al2O3 nuclei appears to control the rate of heat generation and, therefore, the reaction 

rate. This reaction slows as nuclei impinge and end when a continuous layer has formed. 

The activation energy for this step of the reaction was calculated to be 2.9 eV. Although 

CuO and Cu2O are also reduced in this exothermic reaction, resulting in the formation of 

a copper layer, the heat generated is attributed to the formation of Al2O3 [34].  

2) In the second stage of the CuOx /Al reaction, diffusion of oxygen through the Al2O3 most 

likely controls the reaction rate in the first half of the exothermic reaction, and the heat 

generated is attributed to thickening of Al2O3 layers [57]. The rate of the reaction in the 

second half of the reaction, though, may also be limited by thickening of Cu product or 

non-uniform reduction in oxygen source, CuOx. 
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 Blobaum et al. [34] studied self-propagating formation reaction in multilayer foils and, they 

investigated one of the applications in joining and ignition. This work involves the multilayer 

foil reaction, which contains a reduction-oxidation thermite reaction between CuOx and Al.  

Fischer and Grubelich [29] tabulated the experimental reference temperatures of the reaction of 

aluminum and copper oxide. He proposed the energy release of the reaction of aluminum and 

copper oxide to be 974.1 cal/g.  

Combustion synthesis of energetic thin film in nano scale   

 Energetic reactions describe different regimes based on reaction rates which included 

detonations or combustion, and they could be in diffusions or premix mode. Reactants can react 

in different phases such as solid-solid, solid-liquid, liquid-gas, etc.  Combustion can be 

instantaneous or self-sustain mode, and adiabatic, maximum, and combustion flame temperature 

can impact the reaction. Characteristics of the flame can be estimated based on the external 

impact of the flame using black box theory, or they can be solved by the fundamental equations 

of equilibrium for mass, species, and energy [58-60]. 

 Feng et al. presented a model for exothermic reactions which demonstrated the application of 

simultaneous combustion synthesis for the dense ceramic and ceramic-metal interpenetrating 

phase composites. A number of important processes and parameters such as reaction 

stoichiometry, diluents, green density, pressure, and temperature are discussed [61]. Moore et al. 

also published a series of papers and experimental results for combustion (self-propagating high 

temperature) synthesis (SHS) [62-63]. They used the application of thermochemical functions to 

theoretically predict the maximum adiabatic temperature combined with knowledge of the 
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ignition temperature. The actual combustion temperature has been used to determine the heat 

loss from the SHS reaction and the amount of heat needed to ignite the reaction and maintain it 

in the self-sustained propagating mode. 

Ignition   

 Energetic reactions include a number of phases based on the type of reaction, but they always 

start with an ignition phase which is transient and unstable. Reduction of ignition time delay is 

one of the major benefits of the nEM in thin film [64-65]. Zanotti et al. divided the reaction of 

the energetic material into two separate phases: initiation and self-propagation[67]. Self-

propagation is the major focus of this study. The relative amount of energy of the ignition 

compared to the overall reaction is negligible and all numerical and experimental studies have 

been focused on the self- propagation period. Feng [61] compared the various mathematical 

models that have been developed to simulate and predict the ignition temperature in the dense 

ceramic and ceramic-metal films. 

Tunable environment    

 A controlled environment helps to compare and contrast a number of reactions and 

investigate the impact of any variables related to the process. Alexander et al.  used different 

types of thin film geometry to create a controllable environment to measure the characteristics of 

the flame in microscale [67]. Controlling some of the characteristics of the flame such as heat 

loss is necessary to maintain the speed and length of the flame. Rossi et al. used different types 

of thin film geometry to create a controllable environment [68]. This environment is used in 

many micro and nano thin film materials in mechanical and electric devices. Shantanu used 

deposited material in patterns and over a controlled environment to estimate the burn rate of 
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energetic material [69]. The time-varying-resistance method was introduced to investigate the 

ignition of nano particles. 

Submicron heat transport model  

 Using macroscale heat transfer theory in a nanostructure can create a significant error in the 

calculation of the heat transfer rate or temperature distribution.  Nano structures must include a 

specific regime in which separate nanoscale from macroscale heat transfer theory and the risk 

mitigation can be estimated using the macroscale heat transfer as an alternative. Ziman (1960), 

Devienne (1965), and Tien et al. (1969) presented fundamentals and application for conduction 

in microscale. These applications were presented for microscale thermal conduction with the use 

of developed regime maps that show the boundary between the macroscale and microscale heat 

transfer. The maps relate the geometric dimension separating the two regimes for conduction 

heat transfer. Yeh (1988), Cravalho et al. (1967), and Armaly and Tien (1970) similarly 

contributed in microscale radiation [70-84]. Flik et al. shared some of the experimental results 

for the heat transfer regimes of silicon, diamond, and some of the superconductors in thin film 

[85].    

 As more nanoscale devices enter the field of study, interfaces between materials become 

increasingly important on small length scales. Cahill et al. developed thermal transport in 

micro/nanoscale solid state devices and structures. Computations and the numerical solutions of 

the Boltzmann transport equation (BTE) were presented based on experimental and theoretical 

results [86-87].  Goodson et al. used the Boltzmann transport equation to show the influence of 

low-dimensional structures in thermal conductivity of the silicon over-layer [88]. This study 
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measures the thermal conductivity of silicon wafers between 0.4 and 1.6 µm at temperatures 

between 20 and 320 K. 

 Majumdar et al. used stochastic or Monte Carlo techniques for electron transport simulations 

as an alternative for BTE and established additional experimental methods for high spatial-

resolution and high time-resolution thermometry. The application of this method and related 

methods for measurements of thermal transport was demonstrated in low-dimensional structures. 

Scanning thermal microscopy (SThM) achieves lateral resolutions of 50 nm and a measurement 

bandwidth of 100nm [89].  

 Chen et al. presented a number of experimental results in reduction of both the in-plane and 

cross-plane thermal conductivities of superlattices. They also investigates the applicability of the 

Fourier law in nanoscale heat transfer and the impact of that in nanotechnology [90-92]. Mahan 

et al. showed that heat flow is severely decreased in transient phenomena, due to nonlocal 

effects. In fact the temperature profile evolves in all cases significantly slower than the local 

theories predict [93-94]. 

Numerical models for a moving heat source  

 Carslaw and Juger [95] introduced the moving heat source model. Rosenthal [96] solved the 

model (Rosenthal’s theory) using the semi-infinite body subjected to an instant point heat source, 

line heat source, or surface heat source. These solutions can be used to predict the temperature 

profiles at a distance far from the heat source, but they are unable to predict the temperature in 

the interface of the heat source. Eagar and Tsai [97] modified Rosenthal’s theory to include a 

two-dimensional (2-D) surface. Gaussian heat source distributed the hat source with a constant 

distribution parameter and found an analytical solution for the temperature of a semi-infinite 
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body subjected to this moving heat source. Jeong and Cho [98] used the conformal mapping 

technique, and they successfully transformed the solution of the temperature field in the plate 

with finite thickness for a welded joint [99-101]. Using the Gaussian heat sources could predict 

the temperature at regions close to the heat source but the solution is still limited by the effect of 

penetration. Goldak, et al. (Ref. 4 of the number 8), introduced the three-dimensional (3-D) 

double ellipsoidal moving heat source using finite element modeling (FEM). The purposed 

model could resolve the shortcoming of the previous 2-D Gaussian model to predict the 

temperature at welded joints with deeper penetration. [100] Nguyen et al. solved the proposed 

double ellipsoidal model and found a proper match between the numerical and experimental 

results. 

Summary of Literature Search 

 In this section, a review of previous studies in all related areas to this research was presented 

in the same order as the manuscript. The`` reaction of aluminum and copper oxide in bulk and 

thin film geometry has been studied and most of its critical points are highlighted. Ball milling, 

one of the traditional activation techniques, was discussed for the bulk reaction of aluminum and 

copper oxide. There is evidence from the literature that thin films are a better and more effective 

option to increase the rate of reaction.  

 Studies of combustion phenomena in thin film advance material were presented as an effort 

to find the common point between the previous experiments and the energetic reaction of 

aluminum and copper oxide in thin film.  This review also summarized some of the experimental 

and numerical investigations regarding igniting and controlling the reaction of self-propagating 

high temperature synthesis in thin film configuration. A nanoscale heat transfer study was 
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presented in the forth portion of this review in order to demonstrate some required correction in 

properties and geometries of the model in order to treat the nanoscale solution in a macroscale 

regime. In the final portion, the historical background of moving heat source models was 

described as a simple theory to finalize the applicable models.   
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CHAPTER 2  
SPEED OF FLAME FRONT AND IMPACT OF REACTION HEAT LOSS 

Introduction 

 The thermo-physical analysis of the reaction of Nano energetic material nEM in multilayer 

dense film is one of the emerging fields in nanotechnology. Although traditional energetic 

compounds based on organic materials have similar energy per unit weight, nEM materials offer 

much higher energy density and capacity of the burn rate in comparison to the organic materials. 

This field of study shows great promise and potential for nEM in multilayer dense film as an 

alternative substance for explosive and propellant systems. Energy density and burn rate are the 

two of the many mechanical criteria for evaluation and comparisons of energetic materials.       

 Although many earlier studies have shown the burn rate of nEM in multilayer dense film to 

be much lower than organic materials, a number of recent studies utilizing different technical 

processes and geometry of materials have improved the burn rate significantly [34, 43-48]. These 

improvements provide motivation to study nEM and flame in the presence of substrates. The 

challenge has been to explain the actual physical results of the experiments and improvements. 

Therefore, nEM in multilayer dense film material is a good alternative energetic material for the 

explosive and propellant systems. 

 Upper limits for the burn rate of nEM in multilayer dense film materials have not been yet 

determined. There are a number of reports for the propagation speed of dense nEM in multilayer 

dense film materials and many of them show rates no higher than 20 m/s [42, 43]. In contrast, 

this study will show a burn rate (or flame speed) in excess of 60 m/s experimentally for 

multilayer thin film of aluminum and copper oxide. Higher burn rates may be achieved 
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depending on the substrates used. Physical mechanisms can explain the speed of propagation and 

rate of reaction and help define some of the limitations and boundaries of the combustion 

process. It can also show better ways to process the samples in thin film scale.  

 In the literature, the analysis of thermal transport in thin multilayer film can be broadly 

divided into experimental and computational studies. Initial numerical analysis was based on 

one-dimensional model (sandwich theory) [51]. Subsequent work by Weihs et al defined the 

reaction in multilayer thin film of energetic material based on the theory of atomic diffusion and 

thermal transport [43, 46, and 57].  They used the two-dimensional sandwich theory to predict 

the speed of reaction. In reality, the flame dynamics is a strong function of many extraneous 

variables like the geometry and properties of the substrate on which the nanolayers are deposited. 

This is because the substrate acts as heat sink and can control the extent of self-sustainability of 

the thin film reaction. It is clear from the literature that the current models are insufficient to 

predict the overall thermal transport of multilayered thin films deposited on different substrates 

while black box type models require chemical kinetics models to successfully represent the 

flame heat release rate [58, 59].  

 Experimental analysis of the flame is crucial for the validation of the computational models. 

It is expected that the speed of propagation of the reaction is a complex function of properties 

and thickness of the substrate even for a standard geometry and controlled environment. The data 

available in the literature use free standing layers. The literature does not provide any detailed 

insight in very thin nEM in multilayer dense film materials or relate the flame speed with the 

properties and geometry of the substrate. The flame speed can range from 1 m/sec to 100 m/s 

depending on substrate properties. Thus, the objective of this study is to measure the flame speed 
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for different substrate configurations and determine the limiting quenching conditions. These 

quenching conditions can also be incorporated in numerical models. The purpose of the 

experiments is also to obtain a greater physical understanding of the reaction process that may 

allow an increase in the flame speed of thin nEM. A detailed analysis of the chemical kinetics is 

beyond the scope of this study. 

          

 

 

                                  Fig. 2-1.  Detailed schematic of the layered nEM in thin film reaction 
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Experimental procedure 

 To support the experimental effort, samples of Al/CuO have been prepared as multilayer thin 

films by vacuum deposition and deposited on the substrate. Layered Al/CuO in multilayer dense 

film having a total thickness of 3.2 µm was prepared by magnetron sputter deposition.  An Al 

layer thickness of 26 nm and CuO layer thickness of 54 nm were used to provide a bi-layer of 80 

nm for a standard sample configuration, as illustrated in Fig. 1.The thin film was subsequently 

deposited on substrates of various thickness and thermal conductivities as shown schematically 

in Fig. 2. Glass was one example of a single substrate investigated while silica on silicon and 

photoresist on silicon were the types of double substrates analyzed in this work.  

 

 

Substrate (single or double) of variable 
thicknesses and thermal conductivities   

Fig. 2-2.Geometry and properties of the substrate on which the thin film is deposited 

Measurement techniques for flame speed 

 High-speed photography is a popular but expensive technique for measurement of high 

flame speeds such as a million frames per second. The accuracy of this technique is decreased 

significantly in high-speed propagation reactions as in aluminum and copper oxide. For 

improved and accurate measurement of flame speed an electronic time-of-flight technique has 

been developed using patterned strips of layered nEM thin films on a substrate. Copper contacts 

were placed along the length of the strip in the passage of the flame front as shown in Fig. 3. 
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 The flame is initiated via an electric spark at the end of the thin film strip and propagates 

down the length of the film. As the flame passes between each pair of copper contact strips (Fig. 

3), the electrical conductivity between the pair is interrupted.  This is because the reactants are 

electrically conducting due to the presence of the continuous Al layers, but the products (copper) 

are insulators as they do not form a continuous layer but solidify as isolated clusters on the 

substrate surface. The change in film electrical conductance can be sensed as a function of time 

to determine the velocity of flame propagation. This configuration produced a stepwise change in 

voltage, which is digitally acquired and analyzed to measure the propagation velocity. Each pair 

of copper probes is connected to resistances in a parallel circuit, as shown in Fig. 3. The voltage 

output undergoes a sharp drop in magnitude at the instant the flame passes across copper probes. 

This stepwise change in voltage decay is shown in Fig. 4. The data was captured using a data 

acquisition system with 1 MHz sampling rate.  

 The speed of flame along the propagation path can be considered as constant. In the time of 

flight technique, current through the secondary circuit is interrupted by the flame, causing 

voltage drop in several steps. If the speed of flame is constant, the time interval among 

successive voltage drops is expected to be the same due to the homogenous composition of the 

thin film and equidistant spacing of the copper contacts.  All the experiments conducted support 

this hypothesis. Fig. 5 is a typical recorded data of voltage difference. Fig. 5 shows that as the 

flame passes through the thin film with four pairs of copper contacts the voltage dropped in four 

steps. Initial voltage interruption was recorded at sample 9885 and the last interruption at sample 

10495. Comparison showed that each voltage interruption occurred after almost similar number 

of samples (between 150 to 159 samples). The actual time between each voltage drop is about 
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189 to 198 µs for 800 KHz sampling rate. This confirms the constant flame speed hypothesis. 

This experiment was repeated for four to six copper contacts to increase the time resolution and 

similar results were obtained. The time-of–flight technique provides an uncertainty of 50 µs for a 

speed of propagation of 50 m/s with an uncertainty of ± 1 m/s. The methodology for calculating 

the velocity is shown in Fig. 5.  By comparing the voltage gradient at the lead and lag part of the 

drop (leading and trailing edge of the flame), the velocities were computed. This dual 

computation shows that there is adequate confidence in the velocity measurement.  

Effect of Single and Double Substrate  

     Several types of substrates for nEM thin films were examined. In all cases, the total thickness 

of the thin film was held constant at 3.2 µm, composed of a thin film of 80 nm bi-layers. The 

physical domain shown in Fig. 2 is divided into three distinct segments namely 1) the moving 

heat source with a uniform heat generation rate, 2) the single or double substrate of varying 

thickness and thermal conductivities which serve as the heat sink.  Combustion within the flame 

zone generates a fixed amount of heat which depends on the stoichiometry of the reaction. This 

generated heat is partially dissipated by the substrate depending on the thickness and thermal 

conductivity resulting in drastic reduction of flame speed and even quenching. The heat 

dissiptation rate can be controlled by utilizing different heat sinks for the flame.  A material with 

high conductivity can possibly quench the reaction completely. By depositing a thin layer of 

material with low conductivity such as silica, part of the generated heat can be absorbed by the 

substrate. Thickness of deposition also affects the flame speed. 
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(b) 

 

                                                        (a)       

 

 

(c) 

Fig. 2-3. Experimental configuration for Electronic Time of Flight technique for measurement of flame speed in 
MIC: a) Schematic; b) photograph of a section of the MIC material with the resistance arms c) Graphical description 

of thin film and substrate 
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Fig. 2-4. Example of Electronic Time of Flight measurement of flame speed for layered Al/CuO MIC deposited on a 

substrate 

 
Fig. 2-5. Voltage difference using data in Fig. 4 for layered Al/CuO nano thin film deposited on a substrate 
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Fig. 2-6. Actual Voltage drop for reaction of Al/CuO nano thin film deposited on a substrate 

 
 Single substrate is made of only one individual material such as glass or deposited material 

on silicon. Deposited material is relatively thick so it can be considered as a single substrate. 

Single substrate samples were prepared on glass (Table 1) and photoresist on silicon.  For the 

typical structure having an 80 nm bi-layers and total thickness of 3.2 µm, flame speeds in the 

range of 44-51 m/sec were observed (Fig. 6)for glass substrate having thickness of 1000 microns. 

Glass exhibits a high thermal conductivity of 1.1 W/m-K which is favorable for high heat 

dissipation responsible for reduction of flame speed. However 1000 micron thick substrate  

creates a thermal isolation layer resulting in negligible heat loss thereby sustaining the flame at 

reasonable speeds. For photoresist on silicon, flame speeds were measured for substrate 

thickness of 1.1 and 10 microns respectively. It is observed that for 1.1 micron substrate 
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thickness, the flame speed varies from 52-55 m/sec as shown in Fig. 6. For 10 micron substrate 

thickness the flame speed increases to 62 m/sec. When compared with glass, photoresist exhibits 

higher flame speed for a lower substrate thickness. This can be explained by the fact that 

photoresist has a thermal conductivity of 0.2 W/m-K which is five times lower than glass. As a 

result, photoresist cannot dissipate the heat generated by the flame effectively even for 1.1 

micron substrate thickness. Increasing the thickness to 10 microns increases the thermal isolation 

effect, thereby increasing the flame speed to over 60 m/sec.  

 
Table 2-1. Speed of Flame on Single and Composite Substrates 

 

Substrate 

 

Thermal 

conductivity 

(W/m.k)[104] 

Thickness 

(µm) 

Sample 

rate (kHz) 

Speed of reaction 

(m/s) 

 

Average 

Speed  

(m/s) 

glass 1.1 1000 800, 1000 

45.61, 44.78, 51, 

44.76, 47.17 46.75 

photo 

resist/Si 0.19-0.31 1.1 800 52.94, 54.97 53.96 

photo 

resist/Si 0.19-0.31 10 800, 1000 61.05, 61.86, 61.45 

SiO2/Si 1.03 0.03 1000 Quenched Quenched

SiO2/Si 1.03 0.1 1000 Quenched Quenched

SiO2/Si 1.03 0.2 1000 2 2 

SiO2/Si 1.03 0.5 1000 41.66, 43.52, 42.97 42.72 

SiO2/Si 1.03 2 1000 43.1,42.73, 41.78 42.54 
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       Similar velocities to a single substrate were observed for thin films on Si substrates having a 

thick intervening layer of SiO2 to provide thermal isolation. Silica has thermal conductivity of 

1.06 W/m-K which is much lower than thermo conductivity of silicon (148 W/m-K). In thin 

films deposited directly on a Si substrate without a thermal isolation layer, no self-propagating 

reaction was observed, i.e., the reaction was effectively quenched. Fig. 6 shows the average 

speed and quenching of flames depending on the thickness of SiO2 substrate. Thermal 

penetration depth, δ, of the moving reaction front into the thermally grown SiO2 surface layer is 

measured by varying the thickness, DSiO2, of the layer.  Fig. 6 shows that the reaction is 

completely quenched for SiO2 layer of less than or equal to 0.2 µm. The speed of the flame 

propagation seems to be more or less a constant at 40 m/s for SiO2 layers of 1 µm and 2 µm. For 

the case of DSiO2 > δ, the thermal penetration depth, the reaction velocity is expected to be similar 

to that of the bulk glass substrate as both have thermal conductivities values of around 1 W/m-K.   

For DSiO2 < δ, a reduced flame speed is expected due to the increased loss of the heat of the 

reaction into the higher thermal conductivity silicon. The sudden decrease in velocity for DSiO2 < 

500 nm indicates this to be an upper bound for the thermal penetration depth, δ.  If this distance 

and the thermal diffusivity of SiO2 are used, δ, in the simple approximation, tαδ 4= , an 

estimate of the time, t, may be obtained that the composite substrate is exposed to the moving 

reaction front as  t = 69 ns.   
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Fig. 2-7. nEM flame speed as function of thermal isolation thickness of substrate   

Summary 

    This work deals with the reaction of nano energetic material in multilayer dense film. Energy 

density of nEM is much higher than that of conventional films. The problem of thermal transport 

of a multilayer thin film of Aluminum and Copper oxide has been analyzed for varying substrate 

material and thicknesses. The flame speed was experimentally determined using a time of–flight 

technique. Results show that the reaction is completely quenched and is not self-sustaining for 

the silica layer of less than 200 nm. It is also observed that with increase in substrate thickness 

the quenching effect is progressively diminished. The speed of reaction seems to be constant at 

slightly over 40 m/s for silica layers over 1 µm. For substrate thickness greater than 500 nm, 

flame speeds as low as 2-5 m/sec could be achieved. Heat dissipates less in photoresist than 

silica, so the flame speed in MIC with a photoresist substrate is much higher than silica, and can 

reach up to 60 m/s. 
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CHAPTER 3  
MODELING OF A REACTING NANOFILM ON A COMPOSITE SUBSTRATE 

Introduction   

 The energy density of a multilayer nanocomposite material is much higher than that of 

conventional organic energetic material. Nanoscaling can improve the reactivity but not 

necessarily the heat release rate. Usually, the energy density and the flame speed are the key 

variables that characterize the energetic material. Aluminum and copper oxide are used as nano-

bi-layers that have increased the flame speed up to 60 m/s in several studies including a recent 

experimental study by the authors [34, 43-48, 103].  The foil geometry and deposition process 

affect the flame speed.  

 Although it is possible to estimate the adiabatic temperature and speed of flame [104], upper 

limits for the flame speed of multilayer dense nanofilms have not been yet determined 

experimentally. Earlier papers [42-43] showed that the flame speed of these films was no greater 

than 20 m/s [42-43]. In our recent study [103], the flame speed was experimentally determined 

using a time of–flight technique for various single and composite substrate configurations. The 

flame speed was found to be dependent on the substrate properties. These results show that the 

reaction can be completely quenched and is not self-sustaining for a silica layer of less than 200 

nm. It is also observed that with increase in substrate thickness the quenching effect is 

progressively diminished. The speed of reaction seems to be constant at slightly over 40 m/s for 

silica layers over 1 µm. For substrate thickness greater than 500 nm, flame speeds as low as 2-5 

m/sec could be achieved. It is also shown that heat dissipates less in photoresist than silica, so the 

flame speed in multilayer nanofilm with a photoresist substrate is much higher than silica, and 
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can reach up to 60 m/s. Length of the flame is also an important variable which relates the speed 

of flame and heat dissipation. Due to limited speed of flame in this study variation of length of 

flame is negligible so length of the flame considered being constant. 

 Among the analytical and numerical studies, one of the earlier models used was the sandwich 

theory [105]. Subsequent work by Weihs et al [56, 57] defined the reaction in multilayer thin 

film of energetic material based on the theory of atomic diffusion and thermal transport.  They 

used the two-dimensional sandwich theory to predict the speed of reaction. This theory does not 

account for rapid reactions wherein the reactants and products may melt or vaporize prior to 

completion of the reaction. In reality, the flame dynamics depends on the substrate material and 

its thickness and other variables such as the stoichiometry, length and thickness of the nanofilms. 

The substrate acts as a heat sink and can control the extent of self-sustainability of the thin film 

reaction. The sandwich model used in the previous studies did not consider the effect of substrate 

on the flame and hence failed to explain the overall thermo-physical phenomena.  

    A second class of computational models uses a black box theory to analyze thin film 

materials [58, 59]. Unlike the sandwich theory, it simplifies the complex reaction processes in 

the thin film by introducing a control volume that moves with the flame front and encloses the 

region of the reaction front.  The reactions within the black box are considered to occur in a 

stable steady state. The concept of the black box volume allows one to isolate the effects of the 

interaction of the control volume and the surroundings within the defined frame. The control 

volume moves with the flame speed along the reaction path and this flame speed is assumed to 

be constant. The black box model essentially takes into account the effect of the substrate on the 

flame and hence is more dynamic than the sandwich model. However, this method would require 
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a priori global analysis of the characteristic of the flame reaction to estimate the heat released by 

the control volume.  

 

Fig. 3-1.Two-Dimensional computational domain with the flame propagating in the x-direction 

 

 It is clear from the literature that the sandwich model alone is insufficient to predict the 

overall thermal transport of multilayered thin films deposited on different substrates. On the 

other hand, the black box models alone would not successfully represent the flame heat release 

rate without considering the actual reaction in the flame front. Hence, it is important to integrate 

the two models supplemented by experimental results [103] to successfully analyze the heat 

transfer characteristics in the substrate of an energetic nanofilm. Thus, the objective of this paper 

is to determine the sustainability of the dense nanofilm reaction for different flame speeds (close 

to quenching points) and composite substrate thicknesses to aid in the physical understanding of 

limiting quenching conditions in nanofilms. 

 In the model considered in Fig. 1, the estimated width, ω, of 3.2 µm based on penetration 

depth of the flame front (described later) is taken on a substrate width of 100 µm. The heat 

source is a line source, and since all the heat goes into the substrate without any loss, the heat 
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flux needs to be carefully estimated as outlined in the following paragraph. The rest of the top 

surface of silica is insulated. The silica layer is a variable and the silicon layer below is taken as a 

constant at 6 µm. Constant temperature boundary condition is used on the left side of the domain 

and at bottom of the silicon layer 

 

Fig. 3-2. Variation of maximum temperature with flame speed using sandwich theory. 

 Our numerical approach in this paper is to first use the sandwich theory (see section on 

Sandwich model) to predict the theoretical maximum temperature for flame speeds (from our 

recent experiments [105]) based on atomic diffusion and specific multilayer foils without the 

substrates. The total heat of reaction is subsequently computed from the chemical equilibrium 

calculations (see section on Stoichiometric calculations). This heat production can then be 

adjusted by comparing the maximum flame temperature in sandwich model with the black box 

(see section on black box model). Lastly, the correct heat flux is incorporated for a moving heat 

 31



www.manaraa.com

source and the temperature profiles along the interface of the nanofilm and composite substrate 

can be predicted for a parametric variation of flame speeds and substrate thickness along with the 

determination of the corresponding limiting quenching conditions. The above events have been 

shown schematically in the flow chart given in Table 1. 

Table 3-1. Flow chart of the numerical process 
 

 
 

 To support the modeling effort, samples of Al/CuO were prepared as multilayer thin film by 

vacuum deposition. The experimental effort was to study the kinetics of multilayer film reactions 

[106,107], using the flame speed as a measure of the reaction process. Layered Al/CuO having a 

total thickness of 3.2 µm was prepared by magnetron sputter deposition.  An Al layer thickness 
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of 26 nm and CuO layer thickness of 54 nm were used to provide a single bi-layer of 80 nm for a 

standard sample configuration over different substrate, as illustrated in Fig. 3. 

Sandwich Model 

 Mann et al. [57] developed a new model consisting of the so-called sandwich model of 

Armstrong and Koszykowski [105] by characterizing the rate of reaction for any multilayer pair 

of thin films. Based on the description of the bi-layer, the basic equation for atomic diffusion, 

and the general equation for thermal transport, and the speed of flame are calculated for 

multilayer using the Fourier series. This model is the classical approach to estimate the flame 

speed for a multilayer geometry in thin film. Additional details are available in appendix B of 

this document. Flame speed for multilayer thin film with linear interface can be calculated using 

the following equation.  
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Where δ is the thickness of each layer, E is the activation energy of the reaction [34], and T0 and 

Tf are the initial and final temperature. The constants values were used to obtain the maximum 

temperature are available in Table 2. The relationship between flame speed, vx, and maximum 

temperature is given in Fig. 2. The average flame speed measured for the silica-silicon substrate 

in our experimental work [103] is 43 m/s. Using this speed for the same substrate, the maximum 

temperature obtained from Fig. 2 is 2160 K. It is important to note that this reaction rate is based 

on the maximum energy released by the chemical reaction and does not consider any heat loss to 

the environment or substrate. Therefore, in order to obtain a realistic heat generated for the 

numerical model, we need to resort to the so-called black box model. 
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Table 3-2. Constants values were used to obtain the maximum temperature [34, 56, and103] 
 

Variables Values Units 

λ 7.42E-05 m2/s 

A 0.2  

T0 300 K 

E 9.80E+04 J/Mol 
 

Black Box Model 

 The black box model [59] can be used to estimate the heat rate of reaction without 

considering the complexities of diffusion. In the actual flame condition, there would be heat loss 

not only to the substrate but also to the environment. But the idealized model given in Fig. 1 has 

all the heat dissipating to the substrate. Correct input of the heat generation, Q’gen (Fig. 3), is 

hence required. The procedure for finding the corrected heat generation as explained briefly 

earlier is through finding the correct final temperature, and is given at the end of this section. 

Additional details are available in appendix C of this document. 

Stoichiometric Calculations  

 Thin film reactions create an enormous amount of energy, which causes phase transformation 

throughout the reaction. The theoretical energy release of the reaction aluminum and copper 

oxide is 974.1 cal/g [29]. The reaction starts in the solid-solid phase, continues to liquid state, 

and ends up with a mixture of gas and liquid. The reaction of aluminum and copper oxide is 

 34



www.manaraa.com

broken into 6 different stages, as given in Table 3 based on the melting and boiling point of each 

one of the reactants and products. Total amount of heat and the final temperature of a unit cell of 

aluminum and copper oxide1 are calculated based on conservation of mass and energy. At any 

stage of the chemical reaction, total mass is constant, so the total loss of mass of reactants 

through the reaction is equal to the total amount of produced mass. 

 ∑ ∑∑ +=+= CuOAlcuoAl
mmmmm

32
      (2)                                            

The energy balance is given by 

∑∑ ∑ ∑ =++ STORGENOUTIN EEEE        (3)                                                                  

 

                                                 
1 CuO was used as a major reactant material. Due to the high temperature at reaction zone, majority of copper oxide, CuOx dissociates to CuO 
[34, 103]. 
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                                  Fig. 3-3. Detailed schematic of the multilayer nano film 

 

 Fig. 4 shows the mass of reactants and products at each stage based on the simultaneous 

solution of equations (2) and (3). Feng [62] compared the various mathematical models that have 

been developed to simulate and predict instabilities in propagating combustion synthesis 

reactions. Mukasyan [108] had investigated high temperature combustion synthesis waves in the 

Ni and Al system. Reaction of aluminum and copper oxide in nanofilms exhibit similar 

mechanisms as in these studies. Temperature of the reaction in different phases ranges from 

300K to 2793K. Before reaching 933 K, all materials are in solid phase and the reaction is 

limited to diffusion in solid-solid phase. Between 933 K and 1356 K, aluminum undergoes a 

phase change to liquid and the reaction is based on diffusion in solid–liquid phase. This is the 

temperature range at which ignition of the thin film is more likely to occur. As the temperature 

gets close to the melting point of copper oxide (1356 K), the possibility of reaction increases. 

Between 1358K and 2325 K reactants are in liquid phase and the reaction rate is based on the 

diffusion of liquid-liquid phase. The presence of alumina as a final product within the reaction 

zone can decrease the flame speed by reducing the contact area of the reactants. In between 

2325K and 2723K, all the products and reactants are in pure liquid phase and reaction rate is 
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highest at this point. Above 2723K, reaction enters the gas phase of the reactants and the rate of 

reaction accelerates to its highest rate. Fig. 5 shows that the corresponding heat generation at this 

temperature of 2723K can be unrealistically high. Fisher [29] predicts the heat generation of 

aluminum and copper oxide reaction2. The numerical data points in Fig. 5 were generated by 

running the 2D model (Fig.1) iteratively for a substrate thickness of 300 nm for various heat 

fluxes. In this model, there is no heat loss to the environment and all the heat is dissipated to the 

substrate. For each heat flux and a flame temperature at flame speed of 43 m/s, the maximum 

flame temperature was obtained and plotted in Fig. 5. As seen earlier, in the sandwich model in 

Fig. 2, the final temperature that should be reached for a flame speed of 43 m/s is 2160 + 1.5% 

K. Therefore the heat flux interpolated at this temperature is used as the constant heat flux 

boundary condition on the flame for all the numerical cases.  

 The justification for finding the heat flux given above is as follows. Although the estimated 

heat flux from the black box theory should ideally be (Qgen – Qloss) where no substrate is present, 

for numerical runs, this is not practical. Therefore, a thick enough substrate was chosen so that 

the heat lost through the substrate is minimized and the flame temperature of 2160 K approaches 

the flame temperature that would have been obtained without any substrate as in the sandwich 

theory. Secondly, the estimated heat flux is assumed to be the same across all flame speeds and 

substrate conditions as the reaction is still stoichiometric in nature and hence the total heat 

produced should be the same. In addition, the ambient is unaltered, and therefore, Qloss to the 

surrounding is the same for all cases. Hence, the heat flux boundary condition as given by (Qgen – 

Qloss) is the appropriate boundary condition for all numerical simulations. 

                                                 
2 Density, Cp, and some other physical properties of aluminum, copper, and copper oxide are available in “Binary Alloy Phase Diagrams” hand 
book even at high temperature [109]. Fisher, S. H., [29] also published properties of alumina and copper oxide in separate temperature zone. 
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Table 3-3. Six different stages for the unit cell temperature 
 

Phase change

Start End CuO Al  Al2O3 Cu

300 AL +  CuO      (Ignition)  79.6% 20.4% 0.0% 0.0%

300 933 Al                     Melts 69.4% 18.1% 4.8% 7.6%

933 1356 CuO                 Melts 61.7% 16.4% 7.6% 14.3%

1356 1358 Cu                    Melts 61.3% 16.2% 7.8% 14.6%

1358 2325 Al2O3              Melts 46.5% 12.9% 14.1% 26.4%

2325 2723 Al                     Vaporizes 15.1% 5.9% 27.5% 51.5%

2723 2793 Cu                    Vaporizes 0.0% 0.0% 35.0% 64.6%

Temperature range (K) Weight of reactants and products 

 
 

 

Possibility of ignition increases 

 

Fig. 3-4. Mass of reactants, products, and final temperature in stoichiometric reaction of aluminum and copper oxide 
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Fig. 3-5. Estimated volumetric heat generation as a function of final temperature based on 

numerical simulation and sandwich model 

Numerical Procedure 

 

 Normally the numerical model is meant to simulate the actual samples of Al/CuO (40 bi-

layers with each consisting of 26 nm of Al and 54 nm of CuO, totaling 3.2 µm) were prepared by 

vacuum deposition on a substrate. In this problem, this is considered the line heat source. A two-

dimensional model using COMSOL, finite element software, which implements the finite 

element method, is used to simulate the temperature profiles and quenching characteristics of the 

flame as functions of substrate thickness and reaction rates. The thin reaction zone shows in Fig. 

1. In the black box model, the flame is simulated as a finite width heat source with fixed 

coordinate moving over the substrate. From this heat source, heat dissipates into the substrate 

and there is no heat lost to the surrounding. As shown in the previous section, the heat flux was 

obtained from a combination of sandwich theory and black box model using stoichiometric 

calculations. The flame speed is assumed constant. 
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 The computational domain shown in Fig. 1 is divided into three distinct segments, namely 1) 

the moving heat source with a uniform heat flux, 2) the silica substrate of varying thickness 

which serve as the heat sink and 3) the silicon substrate. 

Estimation of Flame Width 

 One key input parameter apart from the corrected heat flux is the width of the flame front. 

Thermal penetration depth, δ, of the moving reaction front into the thermally grown SiO2 surface 

layer was measured by varying the thickness, hSiO2, of the layer.  Our experiments [103] showed 

that the reaction was completely quenched for SiO2 layer of less than or equal to 200 nm, and the 

flame speed was between 40 m/s and 45 m/s for SiO2 layers of 1 µm and 2 µm. 

 In order to justify and provide a width of the flame front for the mathematical model, the 

following analysis is conducted. For the case of hSiO2 > δ, the thermal penetration depth, the 

reaction velocity is expected to be similar to that of the bulk substrate.   For hSiO2 < δ, a reduced 

reaction velocity is expected due to the increased loss of the heat of the reaction into the higher 

thermal conductivity silicon. As a simple approximation, tαδ 4= , where α is the thermal 

diffusivity of SiO2, then the time, t, may be estimated for reaction front as  t ~ 70 ns, from which 

the effective width, ω, of 3.2  µm can be estimated for the averaged measured flame speed of  43 

m/s (at t=70ns for a flame speed of 43 m/s, the flame length is calculated as ω =70e-9 x 43 =3.2 

µm). Length of the flame changes as speed of flame changes but there is slight changing in 

length of flame within 40 to 50 m/s (quenching zone of the flame).Therefore, Length of flame in 

this area (40 to 50 m/s) is employed as a constant for all the cases reported in this paper. 
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Governing Equations and Boundary Conditions 

 The governing equation for the linear moving heat source [110], which is stretched along the 

x direction and moves in the same direction with constant speed of vx over composite substrate 

shown in Fig. 2 are: 
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In this case, α1 and α2 are 
2SiOα and Siα  respectively, which are the thermal diffusion coefficient 

for silica and silicon relatively. Boundary conditions are similar for a single substrate: 
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 An explicit method was used to carry out the computations. Since the flame speed is 

constant, time is proportional to x direction of motion.  Therefore forward differencing was used 

for x direction and central differencing was used for y direction. At the interface between silica 
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and silicon, as recommended by Patankar [113], a harmonic mean thermal conductivity, ke, as 

the numerical value of heat conductivity at the interface of two materials.  

SiSiO

SiSiO

e
kk

kk
k

+
⋅

=
2

2                                                                 (12) 

where  and  are the thermal conductivities of silica and silicon. The governing equations 

in discretized form were solved simultaneously using an iteration technique to obtain the 

temperature profiles. For most cases, a total of 175,000 to 200,000 elements seemed to be 

adequate to provide accurate calculations. The uncertainty was maintained within ± 0.5%. 

2SiOk Sik

Results and Discussion 

Validation of Numerical Results 

 Weichert et al. [110] developed a closed form solution for a moving line source of width, w 

on a single substrate:  
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where  Is the Bessel function of the second kind and q, α, and k are heat flux, thermal 

diffusivity and conductivity respectively. In order to validate the model, non-dimensional 

profiles of temperature 100 nm below the heat source are generated for single substrates (SiO

0K

2) 

of varying thickness as shown in Fig. 6. The maximum temperature for all the cases occurs at the 

leading edge of the heat source. As the substrate thickness increases, the temperature profiles 

become self-similar for h>1000 nm and compare well with the analytical solution given in 

equation 13. As h increases, the peak temperature increases. In addition, for the lower 

thicknesses, temperature reaches ambient temperature earlier in the direction of propagation. 
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Substrate Temperature Results 

 Fig. 7 shows the variation of the maximum temperature with substrate thickness. There is 

very little difference between a single substrate of silica and a composite Si-SiO2 substrate. This 

shows the effectiveness of the composite substrate. As the substrate thickness increases, the 

maximum temperature increases up to about 1 µm. Beyond 1µm, the maximum temperature 

becomes a constant for both single and composite substrate.  

 Fig. 8 shows the temperature profiles in the X-direction at the interface of the substrate and 

the moving heat flux (nanofilm) for different reaction rates and substrate thickness of 50 nm. The 

shaded portion signifies temperatures above 933K where Al melts and the possibility of ignition 

increases. In order for the reaction to self-sustain, the temperature at the preheat zone must 

remain above the melting point of one of the reactants, i.e. aluminum [108].  For flame speeds in 

range 40-50 m/s, the maximum temperature is below this minimum temperature of 933 K needed 

to sustain the flame. Below the grey shaded zone in Fig. 8, flame cannot be sustained for a 50 nm 

silica substrate. The heat generated by the flame front through the chemical reaction is quickly 

dissipated by the thin substrate resulting in the quenching of the flame. In the same thin film with 

thicker silica substrate, the lower heat dissipation lead to higher maximum temperature in flame 

zone with the same speeds range (40-50). As flame temperature rises to the gray zone (over 933 

k) self-sustainability of the flame is more likely. 

 Fig. 9-12 show details of the temperature profiles at the interface (substrate and moving line 

source) for substrate thicknesses of 75, 100, 300 and 500 nm respectively. It is observed that 

with increase in substrate thickness, the quenching effect is progressively diminished. These 

results are consistent with the observations in our experiments [103].  Flame speeds of 40 m/s to 
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45 m/s (average is taken as 43 m/s) were obtained on thin films on Si substrates having a thick 

intervening layer of SiO2 to provide thermal isolation.  In thin films deposited directly on a Si 

substrate without a thermal isolation layer, no self-propagating reaction was observed, i.e. the 

reaction was effectively quenched. As seen in the experiments, the numerical results show that 

the average speed and quenching of flames depend on the thickness of SiO2 substrate. Thus, it is 

inferred from the current computations that the flame speeds and the temperature profiles can be 

controlled in thin film energetic materials by a careful choice of the substrate. Fig.s 8-12 also 

show that the peak temperature increases initially as the substrate thickness is increased from 50 

nm to 300 nm for this flame speed range, but attains a constant value as the substrate thickness is 

increased to 500 nm. In the current model, the total heat responsible for the temperature rise is 

the difference between the heat released and the heat dissipated. An increase in silica thickness 

augments the insulation effect resulting in lower heat dissipation, up to 500 nm.  

  The temperature profiles along the depth of the substrate thickness are shown as a function of 

flame speed in Figures 13-17. Fig. 13 and 14 show almost a linear decay in temperature for all 

flame speeds. It can be seen that at the interface between silica and silicon substrates, the 

temperatures drop to about 60 % of the ignition temperature of 933 K. In fact, it is clearly seen 

that the higher the flame speed sharper is the decay in the temperature profile.  
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Fig. 3-6.Temperature distribution 100 nm below the heat source for various substrate thicknesses, h.  The curve in 

red is the analytical solution 

 

Thickness of substrate (h) [nm] 

Fig. 3-7. Maximum Temperature at 100 nm below the flame front for simple and 

composite substrate in various thicknesses 
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Fig. 3-8.Temperature profile along the interface of the moving heat source and a 50 nm thick immediate substrate. 
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Fig. 3-9.Temperature profile along the interface of the moving heat source and a 75 nm thick immediate substrate. 
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Fig. 3-10.Temperature profile along the interface of the moving heat source and a 100 nm thick immediate substrate. 
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Fig. 3-11.Temperature profile along the interface of the moving heat source and a 300 nm thick immediate substrate. 
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Fig. 3-12.Temperature profile along the interface of the moving heat source and a 500 nm thick immediate substrate. 

300

400

500

600

700

800

900

1000

1100

0 25 50 75 100 125 150 175 200

Depth (nm)

T
e

m
p

e
ra

tu
re

 [
K

]

V=40m/s V=43m/s V=50m/s

 
Fig. 3-13. Temperature profile along the depth of a 50 nm thick immediate substrate at the flux front. 
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Fig. 3-14. Temperature profile along the depth of a 75 nm thick immediate substrate at the flux front. 
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Fig. 3-15. Temperature profile along the depth of a 100 nm thick immediate substrate at the flux front. 
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Fig. 3-16. Temperature profile along the depth of a 300 nm thick immediate substrate at the flux front. 
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Fig. 3-17. Temperature profile along the depth of a 500 nm thick immediate substrate at the flux front. 
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Summary 

 The problem of thermal transport of a multilayer nanofilm of Aluminum and Copper oxide 

has been analyzed for varying substrate material and thicknesses. A numerical analysis of the 

thermal transport of the reacting film deposited on the substrate combined a hybrid approach in 

which a traditional two-dimensional black box theory was used in conjunction with the sandwich 

model to estimate the appropriate heat flux on the heat sources accounting for the heat loss to the 

surroundings. A procedure to estimate this heat flux using stoichiometric calculations is 

provided. By plotting the temperature profiles in the substrate, possibilities of ignition and 

quenching have been explored for certain range of flame speeds.  

 This work highlights two important findings. One is that there is very little difference in the 

temperature profiles between a single substrate of silica and a composite substrate of silicon-

silica substrate. Secondly, with increase in substrate thickness, the quenching effect is 

progressively diminished at given speed. The results show that for small substrate thicknesses of 

50 nm, flames cannot be sustained. However, for a high substrate silica layer thickness of 300 to 

500 nm, flame is self-propagate with expected speed range 40 to 50 m/s. These results are 

consistent with the experimental observations for multilayer films of Al/CuO. 

 These findings show that the composite substrate is effective and that the average speed and 

quenching of flames depend on the thickness of the silica substrate, and can be controlled by a 

careful choice of the substrate. 
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CHAPTER 4  
CHARACTERISTICS OF THE FLAME FOR REACTION OF 

MULTILAYER NANO THIN FILM OVER SUBSTRATE                                        

Introduction  

   Self–propagating high temperature reaction in compact nano film typically includes 

multilayer vapor deposition of a transition metal and an element. Reactants deposit in bi-

layer with even thickness. Flame temperature and speed of flame front are two distinctive 

characters of nano thin film reaction.  A number of variables such as deposition 

temperature, density, thermo conductivity of the material, and the rate of heat loss impact 

the combustion temperature and the speed of the flame during the reaction. In the same 

deposition process and steady reaction, indicated variables can be reduced to the enthalpy 

of the final products and the heat loss value during the reaction. Similarly, speed of flame 

front relates to the maximum flame temperature, the diffusion distance (length of flame), 

and the rate of heat loss during the reaction [61-63,113-115].  

   Multilayer nano film Reaction is considered in a self-propagating mode; therefore, four 

important temperature values affect the reaction process. The reactants at initial 

temperature T0 (1) should be heated up to the ignition temperature Tig (2) which the 

reaction initiates. After the ignition, sufficient heat is released by the reaction, and 

temperature at the flame zone exceeds to the maximum combustion temperature Tc (3) in 

order to self-sustain the reaction. Combustion temperature Tc is much lower than the 

maximum combustion temperature under adiabatic condition Tad (4). Combustion 

temperature can change from one reaction environment to the other; however, in order for 

the reaction to remain in self-sustain propagating mode, combustion temperature should 
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remain above certain level. Sufficient heat )( igTH∆ is necessary to keep the temperature 

at preheated zone above ignition temperature.  

)]()([)( PHRHTH ig +−=∆  (1)   

   Excessive   heat in the flame area has to balance with the required heat for the 

preheated zone, phase transformation, and heat loss through the substrate. 

and  are heat of reactants and the products. 

)( igTH∆

)( RH )( PH

In adiabatic reaction, maximum temperature is achieved based on the following function 

(eq. 2). It can also get more complicated if the total heat is affected by additional heat loss 

through its surroundings (eq.3). 
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Where , , and  are the reaction stoichiometry coefficients, heat 

capacity , and phase transformation enthalpies for the products.  

in )( jP PC )( jPL

   Therefore, the heat dissipation through the substrate directly impacted the maximum 

combustion temperature. Speed of the flame front (the second distinctive characteristic in 

this study) is impacted by the heat loss as a result of a change in maximum temperature. 
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Analytical models were developed to estimate the reaction velocity in multilayered film 

by solving atomic diffusion (eq. 4) [116] and thermal transport (eq. 5) 

 ( CD
dt

dC
∇∇= . )                          (4) 

 TC
dt

dT
C

dt

dQ
PP

2∇−= λ        (5) 

Where t is time, C is the composition, and D is the average coefficient of atomic 

diffusion.  CP is the average heat capacity, λ is the average thermal diffusivity, T is the 

temperature, Q is the total heat in a unit volume of the system, and dQ/dt is the rate of the 

heat generation. These equations are coupled by assuming that the rate at which heat is 

generated (dQ/dt) is proportional to the rate at which the composition of the thin film 

changes (dC/dt). 

   Armstrong [52-53] solved the coupled equations by using the sandwich theory 

assuming that a linear relationship exists between the composition and the energy 

released.  In the simplest case considering the above assumption, the following 

relationship was obtained [51]. 
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where A is an Arrhenius refractor, E is the activation energy for mass diffusion, R is the 

gas constant, δ is 1/4 of the bi-layer thickness (the sum of the A and B layer thicknesses); 

and T0 is the initial temperature. Tmax is the maximum temperature obtained during 

steady-state propagation. 
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Mann et al. [57] expanded on Armstrong and Koszykowski’s model by including the 

effect of an intermixed region. In one simple case, they assumed that the intermixed 

region consisted of the final phase with full reaction, and the composition profile was a 

step function. 

( ) ( )max

0

22
max2 exp RTE

TTE

ART
v

a

x −
−

=
δλ

(7) 

   Maximum combustion flame temperature is clearly related to the speed of flame front 

and the heat loss (eq.7). In order to find the actual relation between the speed of flame 

front and maximum combustion temperature with additional heat loss, the current model 

is not sufficient. To add the impact of the heat loss though the substrate, reaction should 

be analyzed based on fundamental combustion phenomena by using the black box theory. 

This theory simplifies the complex reaction process of thin film by introducing a control 

volume that moves with the flame front and encloses the region of the reaction front.  The 

reactions within the black box are considered to occur in a steady state mode. The 

concept of the black box theory allows one to isolate the effects of the interaction of the 

control volume and the surroundings within the defined frame. The control volume 

moves with the speed of the flame along with the reaction path, and this speed is assumed 

to be constant. A controllable heat absorber (composite substrate) was added as a 

substrate of multilayer thin film reaction to capture the additional heat loss through the 

surrounding. The black box models alone would not successfully represent the flame heat 

release rate without considering the actual reaction in the flame area. Hence, it is 

important to integrate the two models (sandwich and black box) supplemented by 
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experimental results [34] to successfully analyze the reaction for maximum combustion 

temperature at a certain speed. 

   Carslaw and Juger [95] introduced the moving heat source model. Rosenthal’s [96] 

solved it with the semi-infinite body subjected to an instant point heat source, line heat 

source, or surface heat source. These solutions can be used to predict the temperature 

field at a distance far from the heat source but fail to predict the temperature in the 

vicinity of the heat source. Eagar and Tsai [97] modified Rosenthal  theory to include a 

two-dimensional (2-D) surface. Gaussian distributed the heat source with a constant 

distribution parameter and found an analytical solution for the temperature of a semi-

infinite body subjected to this moving heat source. Jeong and Cho [98] used the 

conformal mapping technique and they successfully transformed the solution of the 

temperature field in the plate of a finite thickness to the fillet welded joint [28-30].  

In this study, two theories (sandwich and black box) were integrated along with the 

experimental results to estimate the maximum flame temperature and the other flame 

characteristics. Composite substrate was used as a mechanism to control the heat loss 

during the reaction. Numerical model was developed based on moving heat source for 

multilayer thin film of aluminum and copper oxide over composite substrate of 

silica\silicon [117]. The maximum combustion flame temperature corresponding to speed 

of flame front is the main target of this model. Thickness of the substrate, length of flame 

front, and density of product were utilized for the standard multilayer thin film with 43 

m/s flame front speed. The calculated heat penetration depth in this case was compared to 

the experimental result for the same flame front speed. Numerical model also was used to 

estimate three major variables for a range of 30-60 m/s. In fact, the maximum combustion 
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flame temperature that corresponds to speed along with the length of the flame, density of 

the product behind the flame, and maximum penetration depth in steady reaction were 

calculated. 

Material and methods  

   In previous study, maximum combustion temperature was calculated with limited heat 

loss of the thin film; hence maximum combustion temperature should be modified if 

reactions have significant heat loss through the environment. Due to the additional heat 

loss through the substrate, using the sandwich model alone to estimate the flame 

temperature reaction of aluminum and copper oxide over the substrate is not sufficient. 

Using the black box theory, a moving heat source model would be an appropriate 

alternative to represent the heat transfer simulation. The black box model alone would not 

successfully represent the actual diffusion process within the reaction zone. Hence, it is 

vital to integrate the two theories supplemented by experimental results [103] to 

successfully relate the speed of flame front and the heat loss to the maximum flame 

temperature. A numerical model of moving heat source was developed based on the black 

box theory with four different variables to calculate the maximum flame temperature.  

Length of flame represents the certain amount of multilayer thin film which is 

participating in the reaction at any instant.   

Reaction Heat loss is controlled by thickness of silica within composite substrate. As 

thickness of silica increases, more heat flow is blocked by silica which causes maximum 

flame temperature to rise. Excessive heat loss thought the substrate can be adjusted by 

changing the thickness of the silica.  
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Density of the product behind the flame is reduced during the reaction. The porosity of 

the product can be adjusted by the properties of the materials, and it impacts the heat loss 

and the flame temperature.  

Speed of flame front would impact the flame temperature and it is specified as a variable 

within a numerical model. Fig. 1 demonstrates the physical aspect of each variable in a 

projected model of the reaction.  In the following sections, each one of these variables is 

presented with more details. 

 

 

 

Fig. 4-1.Schematic multilayer thin film reaction over composite substrate 
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Maximum flame temperature  

   Thin film reactions create an enormous amount of energy, which causes the phase 

transformation of the reactants and the products through the reaction. Fisher [36] 

predicted the heat generation of the aluminum and copper oxide reaction3. The theoretical 

energy release of the aluminum and copper oxide reaction is 974.1 cal/g [29]. The 

reaction starts in the solid-solid phase, continues to liquid state, and ends up with a 

mixture of gas and liquid. Based on the melting and boiling point of each one of the 

reactants and products, the reaction of aluminum and copper oxide is broken into 6 

different stages, as shown in Fig. 1. Total amount of heat and the final temperature of a 

unit cell of aluminum and copper oxide4 are calculated based on conservation of the mass 

and energy. At any stage of the chemical reaction, total mass is constant, so the total loss 

of mass of reactants through the reaction is equal to the total amount of produced mass. 

 ∑ ∑∑ +=+= CuOAlcuoAl
mmmmm

32
     (8)                                                                       

The energy balance is given by 

∑∑ ∑ ∑ =++ STORGENOUTIN EEEE       (9)                                             

   Figure1 shows the mass of reactants and products at each stage based on the 

simultaneous solution of equations (8) and (9). Feng [61] compared the various 

mathematical models that have been developed to simulate and predict instabilities in 

propagating combustion synthesis reactions. Mukasyan [108] had investigated high 

temperature combustion synthesis waves in the Ni and Al system. Reaction of aluminum 

and copper oxide in nanofilm is demonstrated with a similar mechanism in these studies. 

                                                 
3 Density, Cp, and some other physical properties of aluminum, copper, and copper oxide are available in “Binary Alloy Phase 
Diagrams” hand 
4
 CuO was used as a major reactant material. Due to the high temperature at reaction zone, majority of copper oxide, CuOx dissociates 

to CuO [121, 34]. 
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Temperature of the reaction in different phases ranges from 300 K to 2793 K. Before 

reaching 933 K, all materials are in solid phase, and the reaction is limited to diffusion in 

the solid-solid phase. Between 933 K and 1356 K, aluminum undergoes a phase change 

to liquid and the reaction is based on diffusion in solid–liquid phase. This is the 

temperature range at which ignition of the thin film is more likely to occur. As the 

temperature gets close to the melting point of copper oxide (1356 K), the possibility of  

reaction increases. Between 1358 K and 2325 K reactants are in liquid phase, and the 

reaction rate is based on the diffusion of liquid-liquid phase. The presence of alumina as a 

final product within the reaction zone can decrease the flame speed by reducing the 

contact area of the reactants. In between 2325 K and 2723 K, all the products and 

reactants are in pure liquid phase, and the reaction rate is highest at this point. Above 

2723 K, the reaction enters the gas phase which causes the rate of reaction to accelerate.  

   Estimation of the maximum combustion temperature is more complex than the 

adiabatic temperature due to a numbers of involved variables. In the multilayer thin film 

reaction [102,105], heat loss was limited through the products and reactants. Also, the 

additional heat loss was dismissed through its surroundings. In this study, heat loss 

through the substrate is significant, and it should be addressed by the reduction of the 

heat generation (Qgen – Qloss) value within the flame area.  The justification for finding the 

corrected heat generation is based on the conjunction of two theories and experimental 

result. The adiabatic heat generation was reduced accordingly, and the corrected heat 

generation was used in the numerical model to estimate the actual flame temperature 

when the substrate is present. Although the estimated heat flux from the black box theory 

should ideally be (Qgen – Qloss) where no substrate is present simulation this is not 
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practical for numerical. Therefore, a composite substrate of silicon/silica was chosen to 

control the heat loss. As heat loss balances, the speed of the flame front should reach the 

steady state. As captured in the experimental result, the speed of the flame front jumps to 

this stable state as soon as the heat loss approaches to the balance point (thickness of 

silica substrate reaches to the maximum heat penetration. For instance, in standard thin 

film reaction, the flame front jumps from almost zero to average 43 m/s when thickness 

of the silica reaches more than 500 nm.  The speed flame front remains similar as the 

thickness of silica increases up to 2000 nm (Fig. 2).  

 

Steady Speed 

Speed Jumped  

Fig. 4-2. Experimental result of speed of flame front for standard thin film over composite substrate 

 
   In order to control the heat loss through the substrate and capture the similar 

phenomena in the numerical model, standard thin film configuration was calculated for a 

number of cases. As the thickness of silica increases, combustion flame temperature 

increases to 2160 K as the thickness of silica surpasses 500 nm.  The maximum flame 

temperature would hold even if the thickness of silica increases further. Similarly, heat 
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generation correction was applied to the other speed of flame front and the maximum 

flame temperature was captured and demonstrated in the following plots (Fig. 3). 
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Fig. 4-3. Adjustment of heat generation due to heat loss through the substrate 

 
 

 62



www.manaraa.com

 
   The speed of the flame front, the heat loss through the substrate, and the density of the 

product impact the maximum temperature of the flame front. Thin film with a different 

number of bi-layer but the same total thickness can have a different flame front speed. 

The maximum combustion temperature can change as the number of bi-layer is increased. 

As flame travels faster over the substrate, the instantaneous amount of thin film that 

reacts (length of flame) should be adjusted as well as the density of the product behind 

the flame. Also in order to have a steady flame, the heat loss should be stable and in an 

acceptable range. Unstable or over range heat loss can quench the flame. To control the 

heat loss, the thickness of silica must reach its maximum heat penetration depth which 

also prevents the huge heat loss through the silicon. To find this maximum heat 

penetration depth, the thickness of silica should be increased until the maximum 

calculated temperature becomes independent from the thinness of the silica. Fig. 4 

compares the impact of the following four variables; the number of bi-layers, the length 

of the flame, the thickness of silica, and the speed of the flame front. Thin film with a 

higher number of bi-layers but the same total thickness has a higher flame front speed 

with less concentration of products. Flame with a higher speed loses less heat through the 

substrate as well as the product, thus less material (a shorter flame) should be consumed 

to keep the flame in self-sustained mode. Due to the less heat loss through the substrate, 

the heat penetration depth is smaller, so the flame should be steady with a smaller silica 

thickness. 

 

 

 

 63



www.manaraa.com

 

 

12 NN ≥                     

12

21

21

12

δδ

ωω

≤
≥

≥
≥

dd

VV
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Reaction heat loss (thickness of silica substrate)  

   It is possible to control the heat at the flame front by placing a substrate underneath the 

heat source.  Absorbing the heat that is generated in the flame can reduce the speed of the 

flame and quench the reaction [35]. The substrate can absorb a significant amount of heat 

at the front of the flame. Using different materials with high to low thermal conductivity 

can reduce the speed of the flame or even stop it. Poor conductive material absorbs less 

heat, boosts the speed of the flame, and causes reaction at a higher rate. On the other 

hand, highly conductive materials have opposite effects on the speed of the flame. In 

some experiments with high conductive substrates, heat loss through the substrate is 

relatively high, so the flame cannot remain in self-sustained mode, and the reaction takes 

place only on a few top layers of the thin film.  

Heat loss to the substrate has a main role in determining the speed of the flame. The heat 

becomes a control variable by utilizing different heat sinks for the flame. Part of the 

generated heat can be absorbed by the substrate if a thin layer of material with low 

conductivity (silica) is deposited over a high conductive material (silicon). Thickness of 

deposition can be varied and affects the speed of the flame.   As the thickness of silica 

increases, the amount of heat that is dissipated through the silicon decreases due to the 

low conductivity of silica. Extra heat transfers through the silica and increases the 

maximum flame temperature. 

   Fig. 5 profiles the temperature at the interface of the thin film and a substrate. These 

profiles become similar, while the silica thickness increases. As this thickness passes the 

maximum heat penetration depth, there is no extra heat available to raise the temperature. 
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Therefore, the temperature distribution within the substrate becomes stable. Penetration 

depth is the maximum distance that heat travels through the substrate (Fig. 5). 
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Fig. 4-5. Calculated temperature within penetration depth of substrate 

 
   In order to find the flame in a steady state mode, the model should be solved with 

maximum penetration depth. Thickness of the silica is increased until the maximum 

temperature becomes independent from this thickness. Fig. 5 compares the maximum 

temperature distribution within the computational domain, while the thickness of the 

substrate is increased. 
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Speed of flame front  

   Speed of flame front is another distinctive characteristic of the thin film reaction. In this 

study, speed of flame front is considered constant across the sample after the thin film is 

fully ignited, which is proved by a number of experimental measurements [103]. Speed of 

flame front has a major role in the experimental evaluation. It is practically impossible to 

capture the combustion temperature due to the high speed of the reaction. This speed is a 

measurable value and it can be used to evaluate and compare the temperature result for 

different cases. Numerical and experimental evaluations also suggest that speed of flame 

can represent the stability of the flame and heat loss through the substrate. Consequently, 

controlling the heat loss can directly impact the speed of flame front. Flame should be 

considered stable within 100% + 0.5% maximum flame temperature as the thickness of 

silica approaches to the maximum penetration depth. In numerical model, thickness of 

silica was increased for any given speed of flame front until maximum calculated 

temperature reaches to the balance point. It is expected that the maximum thickness of 

silica would be equivalent to maximum penetration depth for any nominated speed. The 

stability of flame front speed can be used as an indicator of the final combustion 

temperatures of the reaction, making it unnecessary to measure the temperature value. 

 Length of flame  

 Length of the flame is an indicator of the self-sustainability of the reaction. In order 

for the flame to remain in self-sustain mode, its temperature should stay at a certain level 

above ignition temperature. Energy within the flame zone should also balance along with 

the mass and species according to the black box theory. In any situation, length of the 

flame should satisfy these two conditions. Chemical reaction is the source of heat 
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generation within the flame area.  Product, substrate, and preheated area are three major 

sources of the heat loss in the flame zone. In stationary situation, heat loss always 

balances the total energy within the flame area without changing the dimensions of the 

flame zone, but this can not be true when the flame zone is moving based on the rate of 

chemical reaction. Fast movement of the flame is caused by higher chemical energy 

generation. Also, the reaction zone loses less energy to the surroundings due to the faster 

movement of the flame. In order to keep the temperature at self-sustain level, length of 

the flame should be reduced. In other extreme case, if the chemical reaction is slowed 

down, the speed of the flame will be reduced, and the flame zone lose more energy. To 

maintain the flame temperature at a certain level, length of the flame should be increased.  

This type of balancing is part of the nature of the flame, and it should be defined in 

numerical model.        

 Volumetric heat generation can be represented by volume of thin film which reacts at 

any instant. In two-dimensional models, this volume is presented as length of the flame. 

The length of flame is specified within geometry of the model for any nominated flame 

front speed, and it is gradually adjusted until maximum combustion temperature meets 

the expected value. This adjustment must be accompanied by appropriate thickness of 

silica substrate. Length of flame for each nominated speed is calculated by comparing the 

penetration depth: 

tKi αδ 4=   (10) 

α
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Length of flame for 43 m/s ( sm /43@ω ) was calculated based on measured penetration 

depth in 43 m/s flame speed [115]. Length of flame for other nominated speeds can be 

calculated based on the following function: 

2

2

.
j

i

j

i

j

i

v

v

δ
δ

ω
ω

=   (12) 

Product concentration 

 The medium that is surrounded the flame zone should not have any influence on the 

reaction of dense multilayer aluminum and copper oxide. In the bulk reaction, oxygen has 

a major impact on this type of oxidation-reduction reaction, while dense multilayer film 

is independent of any influences. Weihs et al. [34] investigated a number of aluminum 

and copper oxide reactions under the isolated chamber without the presence of air (noble 

gas such as argon was used). The results indicate that the reaction is taken place with the 

presence of neither air nor oxygen. 

 The surrounding medium (air) has an influence on the product side of the reaction. 

Significant temperature gradient between the loose products (mixture of solid, liquid 

phase) and the sounding environment is a proper condition to force medium (air) to move 

into the product zone. Fig. 6 shows a simple image of air movement within the product 

side which is the source for the porosity of the products. In this figure, the height of the 

material is gradually elevated directly proportional to the air volume that is entering the 

product side. Close to the reaction zone, the height increase of the material is relatively 

negligible, and it would be noticeable far down the stream.  
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Fig. 4-6. Schematic path for air movement within the product area 

 

 John J Moore et al. [61] closely monitored a number of combustion synthesis of 

advance material in thin film. Their experimental observations suggested that the product 

porosity is a part of characteristic of the flame, and it would vary based on flame front 

speed [121-122]. These studies show the porosity of the product behind the flame is 

related to the curvature of flame speed. Numerical study shows that the Maximum flame 

temperature reaction zone is impacted by the porosity of the product behind the flame. 

Porosity can be manipulated by adjusting the properties of product behind the reaction 

zone. In this case, density of the product was reduced by adding air as a replacement for 

the product. 

( ) comairproduct ρραρα =−+⋅ 1  (13) 

Since the second term in the above function is relatively negligible, the function is 

reduced to the following:  
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comproduct ρρα =⋅  (14) 

  The Maximum flame temperature is used as a target to estimate the density of the 

product for different flame front speed. The final density of the product must be 

correlated to the curvature of flame front speed. To validate the final result, the density of 

the product should be inversely proportional to the second power of flame speed. 

 2

1

v
product ∝ρ   (15) 

Heat transfer in micro and nanoscale geometry  

 
Heat flows within the solid by carrying energy with electrons in metals and lattice 

vibration phonons, in insulator and semiconductor. Mean free path of electrons’ and 

phonons’ have an important role in the rate of heat transfer within the solid and across the 

interfaces. As geometry of the object shrinks to micro and nanoscale, electrons’ and 

phonons’ movements are limited to these low scale geometries as well as the heat rate. 

The difference may be negligible in low temperature due to limitation on electrons and 

phonons movements, but it would be significant in high temperature [82-84]. The same 

study also shows transient heat transfer is more sensitive to low scale geometry than 

steady state cases. In order to use Fourier law as a reliable function in micro and 

nanoscale objects, heat conductivity of the material should be modified. The following is 

the typical definition for thermal conductivity of the material (Rohsenow and Choi, 

1961).  
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Λ⋅⋅= vCk
3

1
 

For thermo conductivity of metals C is the specific heat, is the Fermi velocity, andv Λ is 

mean free path of electron. For thermo conductivity of dielectrics and semiconductors  

is the specific heat of phonon,  is the average speed of sound, and Λ is the phonon 

mean free path.  Reduction in mean free path of electrons and phonons in high 

temperature environments directly impacts the thermo conductivity of low scale material. 

Cahill et al. [86, 87] investigates the impact of the low scale heat transfer on a number of 

different materials such as aluminum, copper, silicon, silicon oxide, and diamond. Final 

results show that the scaling impact is not similar in all the materials, and it would be 

different for each case.             

C

v

The heat transfer properties of martial in this numerical model are in micro and nanoscale 

zone, and it should be slightly different than the macroscale properties. The majority of 

material properties that are used in this model are based on the existing experimental 

values in the literature search.  There are still some gray areas in this field of study, and 

mitigation risks should be considered for this type of numerical simulation. 

Heat transfer across the interfaces is the second concern in the heat transfer study in 

micro and nanoscale geometry. Types of materials, quality of contact surfaces, and 

quality of materials are the major factors impacting the heat transfer across the interfaces.  

Study shows [86] that organic materials are more sensitive to heat transfer across the 

interfaces relative to none organic materials. Cahill et al. presented their experiences with 

multilayer micro and nanoscale organic and none organic materials. Conductivity of none 
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organic material is independent of the dimension and the thickness of materials.  Thin 

films with a perfect surface contact are less sensitive to heat transfer rate at the cross 

interface in micro and nano scale objects.  In this study all materials are none organic, 

and quality and surface contact between materials are assumed to be perfect so no 

additional correction is necessary for heat transfer across the different interfaces in this 

numerical model.  

Numerical model  

Two-dimensional model of a moving heat source over a composite substrate  

 A moving heat source is simulated similarly to the friction stir welding concept 

presented by M. Song and R. Kovacevic model [123]. In a welding process, the tool that 

moves along the weld join can be considered a moving heat source over the plate. 

Similarly, in this study, the flame moving along the substrate through complex chemical 

and physical mechanism can simply be modeled as a moving heat source. The coordinate 

of the computation domain is attached to the moving control volume. This coordinate 

transformation changes the heat transfer problem to a stationary convection-conduction 

problem (Fig. 6). 

 

Fig. 4-7. Moving the frame of reference 
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   This model includes some simplifications; the coordinate transformation assumes the 

thin film and substrate to be infinitely long in the direction of flame propagation. 

However, this analysis does not take into account the edge effects at the start and end of 

the plate. Furthermore, the model does not include any variation of concentration profile 

within the flame.  A general model is developed based on energy equation 16. 

( ) ( )
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Dp
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Pressure during the reaction of non-organic material such as aluminum and copper oxide 

is considered constant. This further simplifies the main equation to the following:         
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 Velocity is constant during reaction so equation (3-2) can be simplified as:         

   ( TkQTV
t
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⋅ρ )

)

   (18) 

The reaction is considered to be a steady process and the model is not time dependent, 

therefore: 

   ( ) ( TkQTVc p ∇⋅∇+=∇⋅⋅ρ          (19)                                                                

The general equation includes the conduction and convection terms.      

( ) ( TkTVcQ p ∇−⋅∇=∇⋅⋅− )ρ     (20) 
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 The third dimension (z) is negligible due to the existing symmetry. The governing 

equation can be further simplified as:  
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Material moves through the flame only along the x axis in the moving reference frame; 

therefore velocity vector, , can be simplified to , 

and the main equation is simplified to:  
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Q  is calculated based on the heat generation which is produced during the  chemical 

reactions within the flame. S.H. Fischer [29] tabulated volumetric heat generation of 

aluminum and copper oxide. Density ( ρ ) and coefficient ( ) are considered constant 

based on a concentration profile within flame. Fig. 3-6 shows the typical geometry of the 

thin film and substrate model.  The velocity is considered to have a constant magnitude, 

in which the material moves toward the negative side of the x-axis.  

pc

Boundary conditions should be specified at 10 different interfaces of the model. Fig. 7 

shows the computational domain for the two-dimensional model.  
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Fig. 4-8. Boundary conditions for two-dimensional model of moving heat source 
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KyxT 300),( =∞=
   (32)      

                                                                   

Fig. 4-9. Computational domain for a standard thin film over composite substrate

 77



www.manaraa.com

                                                                                                                                      

Numerical procedure 

   Numerical solution is the only approach for solving the two-dimensional moving flame 

problems. The thin film and substrate is moved through the flame with constant speed, 

and the temperature profile is taken to be steady. The heat generation within the flame 

area increases with the rising temperature of the materials within the flame and preheat 

zone. Heat penetrates inside the substrate along the path of the motion (x-axis). Heat lost 

due to radiation can be neglected because of significant differences between the length of 

the flame and surface contact.  This two-dimensional conduction-convection model 

cannot be solved analytically. Therefore, a numerical approach based on the finite 

element method is adopted using commercial software, COMSOL. A two-dimensional 

moving heat sources with composite substrate model was solved numerically. 

   COMSOL is developed based on FEMLAB. It is a powerful, interactive environment 

for modeling and solving scientific and engineering problems based on partial differential 

equations. It can easily extend the conventional models that address one branch of 

physics to the state-of-the art.  Multiphysics module relates multiple branches of science 

and engineering such as chemical, and heat transfer. These Models are built simply by 

defining the relevant physical quantities rather than defining the equations directly. 

FEMLAB then internally compiles a set of PDEs representing the problem. FEMLAB is 

also capable of creating equation-based models. Besides providing these multiple 

modeling approaches, FEMLAB offers multiple ways to harness this power, either 

through a flexible self-contained graphical user interface or from the MATLAB prompts.  
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Governing equation and Boundary conditions 

   The governing equations for the flame over the composite substrate which is moving 

along the x direction are as follows: 

Governing equation within flame is    
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Governing equation inside the flame front is    
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 Governing equation behind the flame is                    
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 Governing equation within immediate substrate is          
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Governing equation within second substrate is          
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  00 ,,
0

kc pρ represent the properties of the reactant and product with constant 

concentration. Q is volumetric heat generation of aluminum and copper oxide [29].  1α  

and 2α  are thermal diffusivity coefficients for the reactant and product with constant 
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concentration within the flame front and behind the flame. 3α  and 4α  are thermal 

diffusion coefficients of the composite substrate. In this study, these values relatively 

correspond to the silica (
2SiOα ) and silicon ( Siα ). Boundary conditions are defined 

similarly to the case of friction stir welding in composite substrates. 

   Variable mesh was used in this model and the number of elements was increased along 

the interface and flame zone. Appropriate space discretization can improve both the 

accuracy and stability of the solutions. In the following chapter, the discretization and 

final geometry of the model is described in more details. 

Implicit Method 

   The implicit method was used to carry out the computations. Since the flame speed is 

constant, time is proportional to the x coordinate of motion.  Therefore, forward 

differencing was used for the x direction and central differencing was used for the y 

direction.    
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The finite difference form of the differential equation within flame zone is 
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Differential equation within flame and within substrate is: 
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   At the interface between flame zone and substrate, Pletcher [108] recommended a 

harmonic mean thermal conductivity, ke. For instance, the harmonic mean of thermal 

conductivity for the interface between silica and silicon is calculated as follows: 
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2SiOk  and  is thermal conductivity of silica and silicon, respectively. Sik
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eα  is the harmonic mean of the thermal diffusion coefficient, ke, for elements at the 

interface of silica and silicon. 
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Fig. 4-10.  Interfaces within computational domain 

 
Equation 44, 45, and 46 were solved simultaneously using an iteration technique to obtain 

the temperature profiles. To reduce the uncertainty and increase the accuracy of 

numerical solutions, the geometry of the substrate is extended to the point that the heat 

flux on each side of the substrate approaches zero. 

   A study [99] show that the heat distribution within the flame area based on chemical 

reaction or any other driven function does not increase the accuracy of the temperature 

distribution. Even though the heat generation in the flame area is driven based on 

chemical reaction, heat was distributed uniformly in the numerical model to avoid any 

unnecessary complexity.   To find the appropriate number of elements in the 

computational domain, a random number of elements were picked, and the maximum 

temperature in the exact same geometry was compared. The temperature gets more 

accurate by increasing the number of elements in the same geometry. Beyond a certain 

limit (100000-150000 elements) inaccuracy increases due to the truncation error and 

limitation on computational processing. A 100000-150000 range of elements was chosen 
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for these calculations. In fact, the uncertainty within the heat transfer model is kept below 

0.5%. 

Experimental model  

   Tappan [67] used different types of thin film geometry to create a controllable 

environment to measure the characteristics of the flame in microscale. Controlling some 

of these characteristics such, as speed and length of the flame, are necessary to create a 

comparable controlled environment. Rossi [68] used different types of thin film geometry 

to create a similar environment. This geometry is used in many micro thin film materials 

as mechanical and electric devices. 

   Multilayer Al/CuO, having a total thickness of 3.2 µm, was prepared by magnetron 

sputter deposition.  An Al layer thickness of 26 nm and CuO layer thickness of 54 nm 

were used to provide a bi-layer period of 80 nm for a standard sample configuration, as 

illustrated in Fig. 10.   

 

Fig. 4-11. Standard multilayer Al and CuO  

 

   An electronic time-of-flight technique was developed using patterned strips of layered 

multilayer thin film on a substrate , wherein the passage of the reaction front passes 

through copper contacts spaced along the length of the strip. As the flame ignites on one 

side of the thin filmstrip, it can propagate with a constant speed across the sample. The 
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flame can burn each copper strip in equal time increments. This configuration produced a 

stepwise change voltage, which was digitally acquired and analyzed to determine the 

propagation velocity. Each copper probe is connected to a series of resistances in the 

circuit; voltage output can drop at the instant that the flame passes across the copper 

probes.  Several types of substrates for multilayer thin film were examined. Single 

substrate samples were prepared on glass, photo resist, and silica. In order to control and 

capture the heat loss from the flame area, a composite substrate of silicon with thick layer 

of silica was used as the standard substrate.   For a typical multilayer thin film (40 bi-

layers with 80 nm thickness) over the standard substrate, the speed of flame front jumps 

up to 43 m/s as the thickness of silica is reached to maximum heat penetration.  

 

Numerical procedure to estimate the characteristics of the flame  

In order to utilize the temperature of flame, length of diffusivity, and density of the 

product,   with minimum heat loss for any nominated speed, the following steps were 

taken.  

1. Adiabatic temperature of the flame was calculated as an individual unit 

cell of the reactants (Al/CuO). Maximum calculated flame temperature 

should be less than adiabatic flame temperature. 

2. Maximum combustion temperature of the reaction Al/CuO, without 

considering the heat loss through the substrate, was calculated for 

several nominated speed based on sandwich theory. 
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3. Actual speed of flame front for a standard multilayer thin film over 

composite substrate was measured accurately in order to estimate the 

penetration depth at 43 m/s. 

4. In order to justify the accuracy of the numerical model, maximum 

penetration depth was calculated using numerical model   at 43 m/s. 

5. Volumetric heat generation corresponding to 43 m/s was corrected in 

order to match the maximum flame temperature with the expected 

value in this speed (Correction in sandwich theory due to heat loss 

through the substrate). 

6. Maximum heat generation for the other nominated speed was corrected 

accordingly  

7. Maximum flame temperature for the reaction over the substrate, with a 

maximum penetration depth thickness of silica, was calculated for all 

nominated speed using the corrected heat generation in numerical 

model. The maximum flame temperature should be used as a reference 

for the other numerical procedure. 

Model of moving heat source was used to estimate the length of the flame and the 

concentration of the product behind the flame.  

8. Model was used with initial estimation of the flame length and the 

nominated density of the product. Maximum penetration depth was 

calculated by increasing the thickness of the silica and comparing the 

results.  The maximum flame temperature gradually increases in each 

case until the maximum temperature difference between each two 
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 86

consecutive temperatures drops below 0.5% (accuracy of the 

measurement). Thickness of the silica is the maximum penetration 

depth, and the maximum temperature should match with the 

temperature at the reference point. If the temperature does not match 

the reference, the calculation process should be repeated with slightly 

different flame length. Density of the product behind the flame should 

be adjusted as well. 

9. Process 6 and 7 should be repeated for the other nominated speed.  

Chart 12 demonstrates a sample of above process for any nominated speed. 
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Fig. 4-12.Numerical procedure to estimate the characteristics of the flame
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Result  

Numerical model result 

   Numerical approach was used to relate the maximum temperature and speed flame front 

to three other characteristics of the flame: penetration depth, length of the flame, and 

concentration of the product behind the flame. Heat loss through the substrate plays an 

important role in comparing different cases. Composite substrate (silicon\silica) creates a 

comparable heat loss; therefore, all the characteristics of the flame can be linked to one 

another for different flame front speed.  Generated heat within the reaction zone of  the 

immediate substrate (Silica) is dissipated through the second substrate (Silicon). The heat 

flow decreases as the thickness of the silica increases, the length of the flame shrinks, and 

the density of the product reduces.  

   In this section, numerical model was used to investigate the impact of each 

characteristic on heat loss and maximum flame temperature. The standard thin film 

configuration, along with a premeasured speed of flame front (43 m/s), was used as the 

baseline. Final calculated value for maximum heat penetration was also used as a 

comparable value to justify the numerical result with experimental observation. While 

each characteristic of the flame was deviated from the actual value, the baseline 

configuration was applied to investigate the impact of each individual characteristic on 

the temperature profile. This comparison helps to find the actual characteristics of the 

flame for different speed.  

   Actual length of the flame and density of the product behind the flame corresponding to 

different flame front speeds (30-70 m/s) were calculated as an ultimate goal of this study. 
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The calculation details for one additional speed of flame front (50 m/s) and the final 

result for other speeds are presented. 

Characteristics of standard thin film reaction with 43 m/s speed of flame front   

   The numerical model was used for standard thin film geometry with constant speed of 

43 m/s. Maximum flame temperature stabilized as thickness of the silica was reached 

over 570 nm (table 1). Calculated penetration depth, based on measured speed of flame, 

also suggests that the speed of flame stabilizes when the silica thickness reaches 500 nm 

or more.  

   Calculated maximum flame temperature is much lower than the expected (2160+0.5% 

K) flame temperature in Fig. 3, so density of the product behind the flame should be 

adjusted until the flame temperature matches with the expected value. When the density 

of the product behind the flame was dropped to 69%, the maximum flame temperature 

rises to 2160 K(the expected value). In fact, 31% air will be mixed with product during 

this reaction. Table (1) demonstrates all the steps in detail as the density of the product 

drops from 100 to 69%. In summary, speed of flame front for standard multilayer thin 

film over the composite substrate reaches to 43+1.5% m/s as the thickness of silica gets 

close to 500 nm. The calculated length of the flame is 3200 nm, and the product contains 

31% air mixture. Also, maximum estimated flame temperature for this reaction is 

2160+0.5% K. 
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Table 4-1. Calculation of characteristic of flame for speed V=43 m/s 
V [m/s] Peneration Depth [nm] W [nm] T [K] W (Model) Density of product [%] h T @ 43m/s % delta (Local) % delta  Error [0.5%]

43 569.3 3200 2160 3200

Case 1 43 569.3 3200 2160 3200 100 400 1597.1 26.06018519 0.5000

Case 2 43 569.3 3200 2160 3200 100 500 1605.6 0.52939711 25.66666667 0.5000

Case 3 43 569.3 3200 2160 3200 100 570 1608.73 0.194563413 25.52175926 0.5000

Case 4 43 569.3 3200 2160 3200 75 570 2035.6 20.97022991 5.759259259 0.5000

Case 5 43 569.3 3200 2160 3200 70 570 2147 5.188635305 0.601851852 0.5000

Case 6 43 569.3 3200 2160 3200 65 570 2271 5.460149714 -5.138888889 0.5000

Case 7 43 569.3 3200 2160 3200 66 570 2245 -1.158129176 -3.935185185 0.5000

Case 8 43 569.3 3200 2160 3200 67 570 2219.8 -1.135237409 -2.768518519 0.5000

Case 9 43 569.3 3200 2160 3200 68 570 2195 -1.129840547 -1.62037037 0.5000

Case 10 43 569.3 69 570 2171 -1.105481345 -0.5092592593200 2160 3200 0.5000  
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   In order to investigate the impact of each character of the flame on maximum flame 

temperature, final values of each character were deviated from the actual value 

individually. The numerical model was used to find the maximum temperature value for 

each case and to compare them. None of the deviated value represents the real flame 

characteristic and the deviation is only for numerical comparison. 

 Thickness of silica substrate 

    In order to investigate the impact of the heat loss through the substrate on the 

maximum temperature profile, the thickness of silica substrate was increased (between 

100 nm and 1500 nm) for the baseline configuration.  The maximum flame temperature 

rises exponentially (Fig. 12) until it reaches to the peak value (2160 K) and it stabilizes. 

Thickness of silica reaches the maximum penetration depth at 570 + 0.5% nm. 

Temperature profile (Fig. 13) for individual cases shows the impact of silica thickness on 

the heat loss. The temperature profile for the cross-section of both directions of thin film 

reveals more details regarding heat flow. The temperature profile at the interface of thin 

film and the substrate (Fig. 14) shows that the maximum temperature profile becomes 

self-similar as soon as the thickness of silica reaches the maximum heat penetration (570 

nm). Also the temperature at the cross-sectional area of the flame shows (Fig. 15) how 

the heat flow drops and temperature at the interface of silicon and silica reduces as 

thickness of the silica gets close to the maximum heat penetration of 570 nm.  
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Impact of Thickness of Silica Substrate on 

Maximum Flame Temperature

(V=43 m/s, d=69 %, w=3200 nm)

1900

2000

2100

2200

2300

1500 2000 2500

bstrate [nm]

la
m

e
 T

e
m

p
e
ra

tu
re

 [
K

]

1800

0 500 1000

Thickness of Silica Su

F

 
             Fig. 4-13. Calculated temperature within penetration depth of substrate
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Case 16: h silica =100nm, V =43m/s, ω=3200nm, d=69% 

 
Case 15: h silica =200nm, V =43m/s, ω=3200nm, d=69% 

 
Case 13: h silica =400nm, V =43m/s, ω=3200nm, d=69% 

 
Case 11: h silica =600nm, V =43m/s, ω=3200nm, d=69% 

 
Case 11B: h silica =1000nm, V =43m/s, ω=3200nm, d=69% 

 
Case 11C: h silica =1500nm, V =43m/s, ω=3200nm, d=69% 

 
Case 11D: h silica =2000nm, V =43m/s, ω=3200nm, d=69% 

 
 

 
 

Fig. 4-14. Temperature distribution within computational domain 
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Temperature Profile over the Substrate
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Fig. 4-15.Temperature profile at the interface of thin film and silica substrate 
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Temperature Profile along the Cross Section of the Flame 
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Fig. 4-16. Temperature profile at the cross-section of flame and the substrate  
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   Fig. 16 compares the maximum temperature distribution within the computational 

domain while the length of the flame increases from 2000 nm to 5000 nm in standard 

configuration. As the length of the flame increases, more thin film material participates in 

the reaction and more heat is generated within the flame area however the contact surface 

area extends. Numerical results (Fig. 16) show that the maximum flame temperature is 

almost linearly increased as the length of the flame increases.  Temperature profile at the 

interface of thin film (Fig. 17-19) and the substrate shows that the maximum temperature 

profile does not impact the temperature distribution and maximum heat penetration.  
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Fig. 4-17.Calculated temperature within penetration depth of substrate
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Case 24: h silica =570nm, V =43m/s, ω=5000nm, d=69%                                               Tmax=3017 K

 
Case 25: h silica =570nm, V =43m/s, ω=4500nm, d=69%                                               Tmax=3070 K  

Case 26: h silica =570nm, V =43m/s, ω=4000nm, d=69%                                               Tmax=3070 K   

 
Case 27: h silica =570nm, V =43m/s, ω=3500nm, d=69%                                               Tmax=3070 K  

 

Case 29: h silica =570nm, V =43m/s, ω=3000nm, d=69%                                               Tmax=3070 K  

 

Case 30: h silica =570nm, V =43m/s, ω=2500nm, d=69%                                               Tmax=1839 K   

                                    
Case 31: h silica =570nm, V =43m/s, ω=2000nm, d=69%                                               Tmax=1602 K 

  
 

 

 

 
Fig. 4-18. Temperature profile at the interface of thin film and silica substrate 
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Temperature Profile over the Substrate
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Fig. 4-19. Temperature profile at the interface of thin film and silica substrate 
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Temperature Profile along the Cross Section of the Flame 
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Fig. 4-20. Temperature profile at the cross-section of flame and the substrate 
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   Fig. 21 compares the heat distribution within the computational domain while the 

density of the product reduces from 100% to 50%. As the density of the product behind 

the flame decreases, less heat should transfer to the product side, and the excessive heat 

in the flame area causes the maximum flame temperature to boost. Numerical results 

(Fig. 20) show that the maximum flame temperature almost linearly increases as density 

of the product decreases. Temperature profile (Fig. 22-23) at the interface of the thin film 

and the substrate shows the maximum temperature profile directly offset from the 

baseline in each case, so the density of the product should not impact the maximum heat 

penetration depth.    
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Fig. 4-21. Calculated temperature within penetration depth of substrate
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Case 17: h silica =570nm, V =43m/s, ω=5000nm, d=100%                                             Tmax=1608 K

 
Case 18: h silica =570nm, V =43m/s, ω=4500nm, d=90%                                               Tmax=1757 K  

 

Case 19: h silica =570nm, V =43m/s, ω=4000nm, d=80%                                               Tmax=1934 K   

 
Case 20: h silica =570nm, V =43m/s, ω=3500nm, d=70%                                               Tmax=2147 K  

 

Case 21: h silica =570nm, V =43m/s, ω=3000nm, d=65%                                               Tmax=2271 K  

 

Case 22: h silica =570nm, V =43m/s, ω=2500nm, d=60%                                               Tmax=2404 K 

                                    
Case 23: h silica =570nm, V =43m/s, ω=2000nm, d=50%                                               Tmax=2731 K 

 

 

Fig. 4-22. Temperature distribution within computational domain 
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Temperature Profile over the Substrate
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Fig. 4-23. Temperature profile at the interface of thin film and silica substrate 
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Temperature Profile along the Cross Section of the Flame 
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Fig. 4-24. Temperature profile at the cross-section of flame and the substrate
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   Fig. 25 compares the temperature distribution within the computational domain while 

the speed of the flame front increases form 30 to 70 m/s in standard configuration. As the 

speed of the flame front increases, less heat transfers to the substrate, and additional heat 

raises the maximum flame temperature. Numerical results (Fig. 24) show that maximum 

flame temperature almost linearly decreases as the speed of flame front increases. The 

temperature profile at the interface of the thin film and the substrate shows how the speed 

of flame front impacts on the temperature distribution and maximum heat penetration.  
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Fig. 4-25. Calculated temperature within penetration depth of substrate 
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Case 33: h silica =570nm, V =60m/s, ω=5000nm, d=69%                                               Tmax=1830 K 

 
Case 34: h silica =570nm, V =50m/s, ω=4500nm, d=69%                                               Tmax=2009 K  

 
Case 35: h silica =570nm, V =43m/s, ω=4000nm, d=69%                                               Tmax=2171 K 

  
Case 36: h silica =570nm, V =40m/s, ω=3500nm, d=69%                                               Tmax=2252 K 

  
Case 37: h silica =570nm, V =30m/s, ω=3000nm, d=69%                                               Tmax=2594 K  

 
Case 38: h silica =570nm, V =20m/s, ω=2500nm, d=69%                                               Tmax=3069 K 

                                    
 
 

Fig. 4-26. Temperature distribution within computational domain 
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Temperature Profile over the Substrate
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Fig. 4-27. Temperature profile at the interface of thin film and silica substrate 
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Temperature Profile along the Cross Section of the Flame 
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Fig. 4-28. Temperature profile at the interface of thin film and silica substrate 
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Estimate the characteristics of the flame with different speed of flame front  

 
    The reaction of the multilayer thin film over the substrate remains steady in a self-

sustained mode if the heat loss stays at a specific range. To find the proper and 

comparable heat loss, composite substrate was used; therefore, the heat loss can be 

comparable as silica reaches the thickness of maximum penetration depth or higher. The 

flame also propagates with proper length of the flame and creates a unique product with 

specific density in unique speed. Flame front is increased as the thickness of the bi-layer 

decreases; however, the flame front speed is unique for any conditions. Finding these 

unique values is the main goal of this portion of study.  The numerical model was solved 

for a number of cases with constant the speed of the flame front as the length of flame 

and density of the product was modified until maximum flame temperature meets the 

expected value. 

   Table 2 simplified the process in the following steps for a flame with the speed of 

50m/s. 2900nm is the initial estimation for the length of the flame at this speed, and the 

expected heat penetration depth is 503 nm. In order to calculate the maximum heat 

penetration depth, thickness of silica was increased and maximum temperatures were 

compared. The flame temperature stabilizes when the thickness of silica passes 600 nm 

so the expected penetration does not match with the calculated value and the length of the 

flame should be modified. The length of the flame was modified similarly for 2600 nm 

and 2500 nm. Comparison shows 2500 nm is the best possible estimation of length for 

the flame with a speed of 50 m/s. the density of the product gradually was reduced to 

47% in order to match the maximum flame temperature with the expected value. In 
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summary, flame front with a speed of 50 m/s should propagate with a 2500 nm flame 

length. Density of the product also drops to 47% due to the air mixture behind the flame.  
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Table 4-2. Calculation of characteristic of flame for speed V=50 m/s 
 

V [m/s] Peneration Depth [nm] W [nm] T [K] W (Model) Density of product [%] h T @ 50m/s % delta (Local) % delta  Error [0.5%]

50 503.2 2900 2255 2900

Case 1 50 503.2 2900 2255 2900 69 200 1786 20.79822616 0.5000

Case 2 50 503.2 2900 2255 2900 69 300 1841 -2.98750679 18.35920177 0.5000

Case 3 50 503.2 2900 2255 2900 69 400 1866 -1.339764202 17.25055432 0.5000

Case 4 50 503.2 2900 2255 2900 69 450 1873 -0.747463962 16.94013304 0.5000

Case 5 50 503.2 2900 2255 2900 69 500 1880 -0.744680851 16.62971175 0.5000

Case 6 50 503.2 2900 2255 2900 69 600 1884 -0.212314225 16.45232816 0.5000

Case 7 50 476.5 2600 2255 2600 69 200 1669 25.98669623 0.5000

Case 8 50 476.5 2600 2255 2600 69 300 1718 -2.852153667 23.81374723 0.5000

Case 9 50 476.5 2600 2255 2600 69 400 1741 -1.321079839 22.79379157 0.5000

Case 10 50 476.5 2600 2255 2600 69 450 1748 -0.800915332 22.48337029 0.5000

Case 11 50 476.5 2600 2255 2600 69 500 1752 -0.456621005 22.3059867 0.5000

Case 12 50 476.5 2600 2255 2600 69 600 1758 -0.341296928 22.03991131 0.5000

Case 13 50 467.2 2500 2255 2500 69 200 1629 27.76053215 0.5000

Case 14 50 467.2 2500 2255 2500 69 300 1677 -2.862254025 25.63192905 0.5000

Case 15 50 467.2 2500 2255 2500 69 400 1702 -1.468860165 24.5232816 0.5000

Case 16 50 467.2 2500 2255 2500 69 460 1707 -0.488185901 24.30155211 0.5000

Case 17 50 467.2 2500 2255 2500 69 500 1710 -0.438596491 24.16851441 0.5000

Case 18 50 467.2 2500 2255 2500 69 600 1714 -0.233372229 23.99113082 0.5000

Case 19 50 467.2 2500 2255 2500 60 460 1900.5 15.72062084 0.5000

Case 20 50 467.2 2500 2255 2500 50 460 2166 3.946784922 0.5000

Case 21 50 467.2 2500 2255 2500 40 460 2507 -11.1751663 0.5000

Case 22 50 467.2 47 460 2260 -0.221729492500 2255 2500  
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Case 23: h silica =100nm, V =50m/s, ω=2500nm, d=47%                                               Tmax=1873 K 

 
Case 24: h silica =200nm, V =50m/s, ω=2500nm, d=47%                                               Tmax=2085 K 

 
Case 25: h silica =300nm, V =50m/s, ω=2500nm, d=47%                                               Tmax=2187 K 

 
Case 26: h silica =400nm, V =50m/s, ω=2500nm, d=47%                                               Tmax=2241 K 

 
Case 27: h silica =500nm, V =50m/s, ω=2500nm, d=47%                                               Tmax=2270 K 

 
Case 28: h silica =600nm, V =50m/s, ω=2500nm, d=47%                                               Tmax=2285 K 

 
Case 29: h silica =1000nm, V =50m/s, ω=2500nm, d=47%                                             Tmax=2288 K 

 
Case 30: h silica =1500nm, V =50m/s, ω=2500nm, d=47%                                             Tmax=2290 K 

Fig. 4-29. Temperature distribution within computational domain 
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Fig. 4-30. Calculated temperature within penetration depth of substrate 
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Temperature Profile over the Substrate
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Fig. 4-31. Temperature profile at the interface of thin film and silica substrate 
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Temperature Profile along the Cross Section of the Flame 
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Fig. 4-32.Temperature profile at the cross-section of flame and the substrate 
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   Fig. 28 demonstrates the temperature profile as the thickness of silica gradually is 

increased. Similarly the maximum flame temperature profile becomes self-similar as the 

thickness of silica reaches the maximum heat penetration (Fig. 29-30). The temperature at 

the interface of the silicon and silica drop to the lowest value as well (Fig. 31). 

  A similar exercise was repeated for flame speeds 30, 40, and 60 m/s (appendix A). Fig. 

32 shows the final result for the length of flame, the density of the product behind the 

flame, and the maximum flame temperature. Extrapolation of the following trends can 

properly estimate the characteristics of the flame for any other speed of flame in this area.  
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              Fig. 4-33. Characteristic of the flame 

 

 

   Fig. 33 compares the maximum temperature of the flame when the density of the 

product behind the flame assumes to be constant at 69% or it is corrected based on the 

speed of flame front. As the density of the product corrected properly in all nominated 
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flame front speeds, the maximum flame temperature gets close to the initial estimation of 

the combustion flame temperature (Fig. 3). 
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Fig. 4-34. Maximum flame temperature w/o correction of product density 

 

   Density of the product is related to the curvature of the flame front speed. Fig. 34 

demonstrates the proportionality of the calculated density of the product and the square  

of the reverse speed. The coefficient of determination (R2) 0.988 presents a proper linear 

regression between these two characteristics (the flame speed and the density of the 

product), and it is another way to justify the final result.   
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Fig. 4-35. Product density & speed of flame front 
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CHAPTER 5  
SUMMARY 

 
 
 Significant progress has been made in understanding the reaction of nEM in dense 

film . This problem has been solved in 3 steps that are tied together, flame front speed 

and the reaction heat loss were the main targets in the first portion of this study. Time-of-

flight technique has been developed to measure the speed of flame front with an accuracy 

of 0.1 m/s.  This measurement technique was used to measure the speed of propagation 

on multilayer nEM over different substrate material up to 65 m/s. A controllable 

environment (composite silicon\silica) was created for the multilayer standard thin film of 

aluminum and copper oxide to control the reaction heat loss through the substrate. A 

number of experimental results show that as the thickness of silica decreases, the reaction 

is completely quenched. Reaction is not in self-sustain mode if the silica’s thickness is 

less than 200 nm. It is also observed that by increasing silica’s thickness in substrate, the 

quenching effect is progressively diminished. The speed of reaction seems to be constant 

at slightly over 40 m/s for the silica with thickness greater than 500 nm. This would be 

the maximum heat penetration depth within the silica substrate, so the flame length was 

calculated based on the measured speed. 

 A numerical analysis of the thermal transport of the reacting film deposited on the 

substrate was combined with a hybrid approach in which a traditional two-dimensional 

black box theory was used, in conjunction with the sandwich model, to estimate the 

maximum flame temperature. The appropriate heat flux of the heat sources is responsible 

for the heat loss to the surroundings. A procedure to estimate this heat flux using 

stoichiometric calculations is based on the previous author’s work. This work highlights 

two important findings. One, there is very little difference in the temperature profiles 
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between a single substrate of silica and a composite substrate of silicon\silica. Secondly, 

by increasing the substrate thickness, the quenching effect is progressively diminished at 

given speed. These results also show that the average speed and quenching of flames 

depend on the thickness of the silica substrate and can be controlled by a careful choice 

of the substrate. 

In final portion of this study, a numerical model was developed based on the moving 

heat source for multilayer thin film of aluminum and copper oxide over composite 

substrate of silicon\silica. The maximum combustion flame temperature corresponding to 

the speed of flame front is the main target of this model. Composite substrate was used as 

a mechanism to control the heat loss during the reaction.  Thickness of the substrate, the 

length of flame front, and the density of the product were utilized for the standard 

multilayer thin film with 43 m/s flame front speed. The calculated heat penetration depth 

in this case was compared to the experimental result for the same flame front speed. 

Numerical model was also used to estimate three major variables for a range of 30-60 

m/s. In fact, the maximum combustion flame temperature that corresponds to flame speed 

along with the length of the flame, density of the product behind the flame, and maximum 

penetration depth in steady reaction, were calculated. 

Future Work  

   This study demonstrates a numerical process to estimate the maximum flame 

temperature and other characteristics of the flame for multilayer thin film over the 

substrate. In order to reduce the number of variables, the thickness of the thin film is 

considered to be constant while the total number of bi-layers is varied for representation 

of the variation of flame speed. This restriction should be removed in the next stage of 

this study, and the numerical model should be used for a variety of thicknesses of 
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multilayer thin film.   Fig. 36 shows the predicted speed of the flame relative to the 

number of bi-layers in previous studies. Also the estimated maximum temperature and 

the length of flame are presented as the speed of the flame front varied for a thickness 

(3200 nm). Plot 35 can be expanded further to predict characteristics of the flame as the 

total thickness of multilayer thin film is varied.  
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APPENDIX A  
PROPERTIES OF THE MATERIALS 
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Table A-1Physical Properties of Reactants and Product 

 

  

Density 

(g/cm3) 

 

Melting point 

(K) 

 

Latent heat (cal/g) 

 

Boiling point (K) 

 

Latent heat of 

vaporization 

(cal/g) 

 

Cp (J/ kg .k) 

 

 

Al 2.702 933 94.8 2723 2720 903 

Cu 8.933 1356 32 2793 1210 385 

CuO 6.310 1358 35.4   [14] 

Cu2O 6.000 1503 93.6 2073  [14] 

Al2O3 3.965 2325 250.6 3273 1130 [14] 
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APPENDIX B 
SANDWICH MODEL 
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This chapter discusses the one-dimensional modeling and characterization of the propagation 

velocity of the exothermic reaction in multilayer foils. Mann et al. [57] developed a new model 

consisting of the so-called sandwich model of Armstrong and Koszykowski [51-53] by 

characterizing the rate of reaction for any multilayer pair of thin films. The sandwich model has 

a specific description for multilayer foils. Based on this description, the basic equation for atomic 

diffusion, and the general equation for thermal transport, they calculated the equation of the 

reaction rate of multilayer function. 

 The model, which was developed by [57], is the only classical approach for a multilayer 

geometry in thin film. Their experimental results for Al/Ni, support this numerical model. The 

physical model is explained below and two experimental values of the speed of propagation of 

the Al-CuO film were compared with the model. The corresponding temperature profiles for the 

two speeds are also compared.  

Analysis 

Description of multilayer foils 
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Fig. B-1. Ideal profile for composition, C 

Material A:              C=1 

Material B:              C=-1                                                                                                           (B.1) 

Between layers:        C=0 

Theory of Atomic Diffusion  

Basic Diffusion Function 

0)( =∇∇− CD
dt

dC

                                                                                                                    (B.2) 

Sandwich Theory   

C is function of x, y, z, t and propagation in x direction 

x

C
V
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C
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X ∂
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3-D Equation for composition, C:  
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Diffusion is neglected in y and z directions. Therefore, 
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Arrhenius Relationship 
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⎞

⎜
⎝
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⋅= RT

E
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D

λ
                                                                                                                               (B.8) 

where, 

λ = Thermal Diffusion Coefficient 

D = Atomic Diffusion Coefficient 

A = Arrhenius Constant     

R = Ideal Gas Constant  

E = Activation Energy 

Substituting (B.8) in (B.7) 
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Temperature is constant along the y direction  

0

E

RTe

y

−⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟∂
⎜ ⎟
⎝ ⎠ =
∂                                                                                                                       (B.11) 

Substituting (B.10) and (B.11) in (B.9)                                                                                   (B.12) 
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Solving eq. (B.13) by separation of variables 

( ) ( )∑
=

⎟
⎠
⎞⎜

⎝
⎛ −

⎥
⎦

⎤
⎢
⎣

⎡
=

oddn

v
AF

nn
x

n

eykyFC
λα

αsin.,                                                                                   (B.15) 

nnandk α  are the Fourier coefficients  and Eigen-values of the sine series for C0(y) in Fig. 1, and 

are given by:  

δ
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Thermal Transport  

General thermal equation  
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For any chemical reaction 

( ) CTTcQQ fP ∆−−=− 00 ..ρ                                                                                                   (B.20) 

Where  is the heat released in reaching a composition C when starting from pure A and B 

(see Fig.1) 
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C∆ is only a function of x and time, based on the initial assumption 
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Substituting (19) and (24) in (18) 
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T is function of x only. Therefore, 

2

2
2

x

T
T

∂
∂

=∇                                                                                                                               (B.26) 

x

C
v

t

C

x

T

x

T
v

x

T
c xxp ∂

∆∂
+

∂
∆∂

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

2

2

. λρ                                                                      (B.27) 

Assuming Steady state, 
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Incorporating the approximation, 
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Equation (B.21) becomes 
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Velocity of Self-Propagation 

Based on eq. (B.30) and (B.15), we can derive the rate of reaction. 

If we assume that is a linear function of C as shown in fig (B.2). C∆
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Fig. B-2.  Linear function of C 
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Then the reaction rate:  
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b) If we assume that is a function of as shown in fig (B.3). C∆ 2C

 

Fig. B-3. None-Linear Function of C 

( ) 2
0.. CTTcC fp −=∆ ρ  

Then the reaction rate: 
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In this analysis, we will use the linear profile as given in eq. (B.31). 

Velocity of Self-Propagation CuOx and Al 

For a thin film of two material eq. (B.31) can be written as 
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APPENDIX C  
GOVERNING EQUATIONS_BLACK BOX 
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Governing Equation   

To define flame propagation, conservation of mass, species and energy are applied in the two-

dimensional control volume.  

Mass Conservation  

The general form for mass conservation is defined as: 

0)( =⋅⋅∇+
∂
∂

v
t

ρρ
                                                                                                                     (C.1)                 

t∂
∂ρ

 is rate of gain of the mass per unit volume  

)( v⋅⋅∇ ρ  is net rate of mass flow out per unit volume  

For steady flow,  

0)( =⋅⋅∇ vρ                                                                                                                              (C.2)   

 For the axisymmetric system, equation (C.2) is expanded to                                                                                    
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rr
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Species Conservation  

The general form for mass conservation of species is expressed as 

 '''".
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i mm
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t

Yi
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∂ .ρ

 is the rate of gain of mass of species i per unit volume  
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". im∇  is net rate of mass flow of the species i out by diffusion and bulk flow per unit volume 

'''im  is net rate of mass production of species per unit volume 

The mass flux of i, mi is defined by the mass average velocity i, vi as follows:  

                                                                                                                            (C.5) 

m of all of the individual species mass flux is the mixture mass flux. 

               (C.7), (C.6) 

he mass average velocity

                                                                                              (C.8) 

This (V) is the v

an be expressed in term of diffusion velocity. 
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The total species mass flux is the sum of th
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elocity known as bulk velocity. The difference between the spices and bulk 

velocity is defined as diffusional velocity.  

Vvv idiffi −≡, The diffusion mass flux c

( ) vYVv .ρ=−                                                                              diffiiiidiffi

e bulk flow and diffusion contribution. 
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Rewriting the general species con
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servation equation based on mass diffusion: 
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For the axisymmetric geometry the corresponding conservation for the binary mixture is: 
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Y is the mass fraction  

m is the mass  

flux 

n rate per unit volume 

Energy Conservation  

ame is simplified by Shvab-Zeldovich. Shvab-

ion shows total difference between the rate of enthalpy transport by 

m’ is mass flow rate 

m” is the mass 

m”’ is mass productio

    Conservation of energy for laminar premixed fl

Zeldovich energy equat

convection and diffusion is equal to the rate of enthalpy production by chemical reaction.  

( )[ ] ( )∑∫∫ −=∇−∇ ''.'0. ..". mhdTcDdTcm ρ                                                           (C.14) ifpp

For the two-dimensional axisymmetric case, the equation is expanded to  
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Mass flux can be derived based on the speed of flame 

                                                                                                                              (C.16) 

 of the final temperature 

T %95)( =

⎞∂

Lu Sm .." ρ=

Length of the flame can be calculated based on 95-99%

fTδ                                                                                                                          (C.17) 
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APPENDIX D  

CALCULATION OFCHARACTERISTIC OF FLAME FOR DIFFERENT SPEEDS                                                  
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Table D-1. Calculation of characteristic of flame for speed V=30 m/s 

V(m/s) Peneration Depth (nm) W(nm) T(k) W (MODEL) Density of product (%) h T@30m/s % delta (Local) % delta 0.5% error

30 809.2444393 4500 1975 4500

809.2444393 4500 1975 4500 69 600 2698 0.5000Case 1 30

Case 2 30 809.2444393 4500 1975 4500 69 700 2714 0.589535741 0.5000

Case 3 30 809.2444393 4500 1975 4500 69 800 2724 0.367107195 0.5000

Case 4 30 809.2444393 4500 1975 4500 69 900 2730 0.21978022 0.5000

Case 5 30 772.4411385 4100 1975 4100 69 900 2533 -7.777339124 0.5000

Case 6 30 772.4411385 4100 1975 4100 69 850 2530 -0.118577075 0.5000

Case 7 30 772.4411385 4100 1975 4100 69 800 2527 -0.118717847 0.5000

Case 8 30 772.4411385 4100 1975 4100 69 700 2519 -0.317586344 0.5000

Case 9 30 772.4411385 4100 1975 4100 69 770 2525 0.237623762 0.5000

Case 10 30 772.4411385 4100 1975 4100 80 770 2244 -12.52228164 0.5000

Case 11 30 772.4411385 4100 1975 4100 85 770 2135 -5.105386417 0.5000

Case 12 30 772.4411385 4100 1975 4100 90 770 2035 -4.914004914 0.5000

Case 13 30 772.4411385 4100 1975 4100 95 770 1944 -4.681069959 1.569620253 0.5000

Case 14 30 772.4411385 4100 1975 4100 94 770 1962 0.917431193 0.658227848 0.5000

Case 15 30 772.4411385 4100 1975 4100 93.5 770 1971 0.456621005 0.202531646 0.5000  
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Table D-2. Calculation of characteristic of flame for speed V=60 m/s 
 

V(m/s) Peneration Depth (nm) W(nm) T(k) W (MODEL) Density of product (%) h T @60 m/s % delta (Local) % delta 0.5% error

60 426.5092687 2375 2500 69

Case 1 60 426.5092687 2375 2500 69 200 1527 0.5000

Case 2 60 426.5092687 2375 2500 69 300 1557.8 1.977147259 0.5000

Case 3 60 426.5092687 2375 2500 69 400 1570.52 0.809922828 0.5000

Case 4 60 426.5092687 2375 2500 69 500 1575.52 0.31735554 0.5000

Case 5 60 400.1011591 2375 2200 69 500 1467 -7.39740968 0.5000

Case 6 60 400.1011591 2375 2200 69 400 1462.16 -0.331017125 0.5000

Case (1) 7 60 400.1011591 2375 2200 65 400 1534.2 0.5000

Case (1) 8 60 404.6222196 2375 2250 50 400 1877 0.5000

Case (1) 9 60 404.6222196 2375 2250 40 400 2193.8 0.5000

Case (1) 10 60 404.6222196 2375 2250 30 400 2614 0.5000

Case (1) 11 60 404.6222196 2375 2250 35 400 2346 1.221052632 0.5000

Case (1) 12 61 401.291939 2375 2250 35.5 400 2367 0.887198986 0.336842105 0.5000  
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